나노물질
우리는 구조적 및 광전자적 특성에 대한 그래핀 전달 프로세스의 효과를 특성화하기 위해 실리콘 스트립-도파관 기반 마이크로링 공진기(MRR)에 통합한 후 단층 그래핀 G 및 2D 밴드의 라만 매핑 연구를 제시합니다. Raman G 및 2D 피크 위치 및 상대 강도의 분석은 그래핀이 MRR 위에 매달려 있는 곳에서는 전기적으로 고유하지만 도파관 구조의 상단에 위치하는 곳에서는 적당히 정공 도핑되어 있음을 보여줍니다. 이것은 그래핀-실리콘 이종 계면에서 페르미 준위 '피닝'을 암시하며 우리는 페르미 준위가 아래로 이동하는 것으로 추정합니다. 고유 값에서 약 0.2eV만큼, 해당 피크 홀 농도는 ~ 3 × 10 12 입니다. cm −2 . 관찰된 G 피크 비대칭의 변화는 E의 '강화' 조합에 기인합니다. 2g 그래핀이 기본 MRR 도파관 구조에 의해 지지되는 광 포논, 이 증가된 정공 농도의 결과 및 국부적인 평면 외 '주름'(곡률 효과)의 결과로 동일한 모드의 축퇴 감소 , 그래핀이 매달려 있는 곳. 곡률 반경이 r인 두 개의 서로 다른 MRR 장치와 통합된 그래핀 검사 =10μm 및 다른 하나는 r =20μm, 장치 형상이 도핑 수준에 측정 가능한 영향이 없음을 나타냅니다.
섹션> <섹션 데이터-제목="배경">실리콘 포토닉스 플랫폼과의 통합은 상대적으로 저렴한 비용으로 CMOS 백엔드 라인 대량 제작 가능성 덕분에 그래핀이 광검출, 광 변조 및 생화학적 감지와 같은 응용 분야에서 가장 큰 영향을 미칠 수 있는 분야입니다[1 ]. 사실 이 분야에 대한 연구는 이미 이루어지고 있지만[2, 3], 고성능 소자를 구현하기 위해서는 그래핀 전사 공정이 최적화되어야 하고 그래핀의 기계적 및 전자적 특성에 대한 모든 공정 관련 변형이 적절하게 이루어져야 합니다. 특성화되고 이해됩니다. 예를 들어, 그래핀 집적 실리콘(및 기타) 기판은 이종 물질 결합과 관련된 상당한 양의 공정 오염 물질 및 결함을 생성하는 경향이 있으며, 이는 두 물질 사이의 접합부에서 장치 품질에 영향을 미칠 수 있습니다. 이러한 인터페이스에서 변형 및 의도하지 않은 도핑으로 인한 그래핀 밴드 구조의 변화는 피크 위치, 너비, 비대칭 및 상대 피크 강도의 변화를 통해 라만 산란 시그니처에 나타날 수 있습니다. 라만 분광법은 변형률[5], 도핑 수준[6], 결함 밀도[7] 및 가장자리 구조[8]를 포함하여 그래핀의 전자 및 진동 특성[4]을 평가하는 민감한 도구로 사용되어 왔습니다. 기질의 영향을 받는 것과 분리하기 어렵습니다. 변형률 및 p에 따른 그래핀 라만 피크의 강도, 너비, 이동 속도 및 분할 - 및 n -유형 도핑은 이미 보고되었습니다[5, 9,10,11].
그래핀은 각각 뚜렷한 물리적 기원을 가진 3개의 주요 라만 산란 피크를 나타냅니다. 이중 공명(DR) D 피크는 약 1350cm −1 에 나타납니다. [12] 무질서와 관련이 있으며 일반적으로 그 모양과 상대적 강도가 전달된 재료 품질의 척도로 자주 사용됨을 의미합니다(즉, 고품질의 깨끗한 재료에는 약하거나 부재). 다른 두 개의 주요 피크는 G 피크로, 영역 중심 포논의 흑연 면내 산란에서 파생되며 약 1580cm −1 에 위치합니다. [8, 12] 및 약 2700cm −1 에 나타나는 2D 피크(D 피크의 2차) [13]. D 피크와의 관계에도 불구하고, 2D 피크는 기본 선택 규칙(q =0) 특히 전자-포논 DR 산란 과정에 의한 반면 D 피크는 운동량을 보존하기 위해 고도로 국부적인 전자 결함 산란을 필요로 합니다[12, 14,15,16]. G 및 2D 피크의 모양, 강도 및 위치를 통해 그래핀 층의 수는 물론 고유한 변형률 및 식별할 재료의 과도한 캐리어의 존재를 확인할 수 있습니다[8, 13].
실리콘 포토닉스 플랫폼과의 그래핀 통합은 다양한 디바이스 애플리케이션 관점에서 흥미롭습니다. 그래핀이 밑에 있는 실리콘 광자 장치에서 소멸 광학 필드에 의해 조사될 수 있는 흡착된 종에 대한 고친화성 표면 기능 층으로 작용하는 향상된 생화학 센서를 시연하기 위해. 그래핀의 2차원적 특성은 또한 광전자 밴드 구조로 이어지며, 그 충전 충전은 매우 낮은 전력의 정전기 게이팅으로 조정할 수 있습니다. 이 경우 'Pauli 차단' 효과는 들어오는 광자에 대한 재료의 불투명도를 변경하여 통신 응용 프로그램에서 사용할 가능성이 높은 초고속(GHz) 광 변조 또는 전환 가능성을 제공할 수 있습니다. 실리콘 포토닉스 도파관 기반 장치와의 통합을 통한 그래핀의 면내 선형 흡수 계수에 대한 이전 보고서[17,18,19,20]는 상당히 다른 결과를 산출했으며, 이러한 연구에서 특정 전달 프로세스 및 기판 인터페이스 품질이 관찰된 변화에 어떤 역할을 합니다. 이 작업에서, 그래핀 통합 실리콘 경마장 유형 마이크로 링 공진기(MRR)에 걸친 라만 G 및 2D 피크의 공간적 특성은 매핑 기술을 사용하여 시연됩니다. 우리의 접근 방식은 G 및 2D 피크 주파수, 상대적 통합 강도 및 너비를 모두 조사하고 공간 위치와 연관시켜 이 인터페이스에서 그래핀의 구조 및 광전자 특성에 대한 기본 실리콘 도파관의 영향을 설명하는 것입니다.
섹션>이 연구에서 Si MRR 장치는 상업용 Si 파운드리(CEA-LETI, France)에서 제작되었으며 2μm의 - 두꺼운 매몰 산화물 층. 이러한 도파관 치수, 특히 상대적으로 좁은 도파관 폭(일반적인 스트립 도파관과 비교)은 전사 후 표면 통합 그래핀과의 우수한 모달 중첩을 보장하기 위해 선택되었습니다. 방사형 성분이 10μm이고 다른 하나가 20μm이고 둘 다 동일한 20μm 길이의 선형 단면을 갖는 두 개의 '경주 트랙' 유형 MRR 장치가 연구됩니다. 그래핀을 옮기기 전에 장치를 아세톤, 이소프로필 알코올(IPA), 탈이온수 및 레지스트 스트리퍼(NMP:1-methyl-2-pyrrolidone)로 세척했습니다. 전송 직전에 산소 플라즈마 에칭(40초 동안)이 이어졌습니다. 그래핀은 구리 호일(Gratome-R-Cu, Bluestone Global Tech)에서 화학 기상 증착(CVD)에 의해 성장한 다음 폴리머 매개 습식 전사 절차를 사용하여 사전 세척된 도파관으로 전사되었습니다[21]. 래스터 스캔 포토리소그래피 및 산소 플라즈마 에칭을 사용하여 MRR 장치의 선택적 적용 범위를 보장하기 위해 그래핀을 패턴화했습니다. 가능한 한 깨끗한 샘플을 보장하기 위해 환원 분위기와 아세톤 세척에서 270°C의 후속 어닐링 처리를 적용하여 광학 이미지에서 알 수 있듯이 잔류 포토레지스트를 거의 완전히 제거했습니다.
라만 스펙트럼 매핑은 600g/mm 격자가 있는 Horiba LabRAM HR Evolution Spectrometer를 사용하여 후방 산란 구성으로 실온에서 수행되었습니다. 산란 신호는 공초점으로 수집되었고 통합 Peltier 냉각 전하 결합 소자(CCD) 카메라로 감지되었습니다. 샘플은 633nm 헬륨 네온 레이저 광에 의해 여기되었고 매핑 중 샘플의 기계적 움직임은 Marzhauser 전동 현미경 XYZ 스테이지에 의해 제공되었습니다. 입사된 레이저 광은 0.75의 개구수를 갖는 × 50 대물 렌즈를 사용하여 샘플 표면에 초점을 맞췄습니다. 레이저 가열을 피하기 위해 샘플의 레이저 출력 밀도를 2mW 미만으로 유지했습니다[22]. 곡률 반경이 r인 두 개의 서로 다른 그래핀 통합 실리콘 MRR 장치에 대한 라만 맵을 얻었습니다. =10μm 및 20μm. 맵은 120 × 120 포인트 어레이에서 얻었고 각 포인트 사이의 단계 크기는 0.25μm이며 정확한 주파수, 강도 및 Raman G 및 2D 피크의 너비는 Lorentzian 선 모양을 스펙트럼 피크에 피팅하여 결정되었습니다. . 동일한 기기 구성(슬릿 폭, 격자 및 여기 소스)을 사용하여 단결정 실리콘 샘플을 측정하여 4.6cm −1 의 주요 Si 산란 피크의 대역폭에서 스펙트럼 분해능을 추정합니다. 또는 그 이상입니다.
섹션>단일층 그래핀을 전사했는지 확인하기 위해 라만 매핑 연구에 앞서 전사 직후(514nm Renishaw 1000 시스템 사용) 단일점 라만 산란 신호(그림 1)도 측정했습니다. 이 스펙트럼은 낮은 구조적 무질서를 나타내는 약한 라만 D 피크를 나타냅니다(합리적으로 고품질 그래핀). 강렬한(G 피크에 비해) 대칭 2D 산란 모드; ~ 1587cm −1 의 G 피크 위치 . 상대적으로 강렬하고 대칭적인 2D 산란 피크와 예측 값에 가까운 G 피크 주파수의 조합, ωG (n ) =1581.6 + 11/(1 + n 1.6 ) 여기서 n 는 층 번호[23]이며, 전사된 그래핀이 실제로 단일 층[24]임을 확인합니다. 단층 그래핀 집적 MRR의 광학 이미지(r =10μm)는 그림 2a, b에 표시되어 있으며 그래핀 G 및 2D 피크에 대한 매핑된 영역은 각각 그림 2a 및 2b에 나와 있습니다. 그림 2c, d는 결과 G 및 2D 피크 위치 맵으로 주파수 상향 이동(최대 ~ 11 및 ~ 8 cm −1 )을 나타냅니다. , 각각) 그래핀이 매달려 있는 위치에 비해 MRR 도파관 구조의 상단에 위치합니다.
<그림>강렬한 대칭 2D 산란 모드 및 G 피크 주파수의 결과로 여기에서 연구된 Si 도파관 장치에서 단일 층 그래핀의 전달을 추론하는 단일 지점 라만 산란 스펙트럼(514nm 여기), ωG서브> ~ 1587cm −1
그림> <그림>동일한 그래핀으로 코팅된 Si MRR(r =10-μm 장치)(스케일 막대 =10 μm)는 a에 대한 서로 다른 매핑된 영역(흰색 점선 사각형)을 보여줍니다. G 및 b 각각 2D 피크. 그래핀은 약간 더 어두운 대비로 나타납니다(왼쪽 하단 모서리가 화살표로 표시됨). ㄷ 그리고 d 해당 피크 위치를 표시하고 e 및 f Eqs로부터 결정된 페르미 레벨 맵. (1) 및 (2) 각각
그림>이동된 G 및 2D 라만 피크는 그래핀 층에서 변형 또는 도핑 또는 이들의 조합과 연관될 수 있습니다. 그러나 낮은 변형 한계(G 피크의 분할이 없는 경우)에서 2D 피크의 변형 관련 이동(∂ω 2디 /∂ε )는 G 피크(∂ω)의 약 6배입니다. G /∂ε ) [5]. 여기에서 그래핀이 도파관에 있는 G 및 2D 피크의 광범위하게 동등한 이동을 관찰한다는 것은 이동의 주요 원인이 변형이 아닐 가능성이 있음을 나타냅니다. 반면에 도핑에 따른 G 및 2D 피크 이동의 상대 속도와 방향은 캐리어 유형에 따라 매우 다릅니다[25]. 두 전자(n ) 및 구멍(p ) 도핑, G 피크의 주파수는 항상 고유 값에서 증가합니다. 즉, 페르미 준위가 있는 G 피크 위치의 플롯은 0에 대해 거의 대칭입니다. 그러나 2D 피크의 경우 주파수가 p의 적당한 증가를 위해 상당히 상향 이동됩니다. -도핑 수준(~ 15cm −1 ) 3 × 10 13 cm −2 ), 그것은 본질적인 위치에서 ~ 3 × 10 13 의 전자 농도까지 거의 변하지 않습니다. cm −2 , 그 이상에서는 빠르게 하향 이동합니다. 이는 페르미 레벨이 약 0인 2D 피크 위치에 대해 고도로 비대칭적인 곡선을 생성합니다. G 및 2D 피크에 대해 크기와 방향이 모두 유사한 이동을 관찰한다는 것은 그래핀이 적당히 p임을 강력하게 시사합니다. - 도핑, 부유 위치와 비교하여 도파관에 위치합니다. 이 효과를 정량화하기 위해 다음과 같은 경험적 관계(식 (1) 및 (2))를 사용하여 [25] 이후에 라만 G 및 2D 피크 이동으로부터 대략적인 페르미 준위 이동을 결정했습니다.
$$ \left|{\mathit{\mathsf{E}}}_{\mathsf{\mathsf{F}}}\right|\times \mathsf{41.5}=\Delta {\omega}_{\mathit{ \mathsf{G}}}=\omega \left(\mathit{\mathsf{G}}\right)-{\omega}_{\mathsf{0}}\left(\mathit{\mathsf{G}} \right) $$ (1) $$ \left|{\mathsf{\mathsf{E}}}_{\mathsf{\mathsf{F}}}\right|\times \mathsf{31.5}=\Delta { \omega}_{\mathsf{2}\mathit{\mathsf{D}}}=\omega \left(\mathsf{2}\mathit{\mathsf{D}}\right)-{\omega}_{ \mathsf{0}}\left(\mathsf{2}\mathit{\mathsf{D}}\right) $$ (2)여기서 ω 0 (G ) (=1580cm −1 [26]) 및 ω 0 (2디 ) (=2640cm −1 [9]) 변형되지 않은 고유 그래핀(633nm 여기의 경우)에 대한 G 및 2D 피크 위치, ω (G ) 및 ω (2디 )는 지도의 각 지점에 대해 결정한 G 및 2D 피크 위치이며 E F eV 단위의 페르미 준위입니다. 그림 2e, f에서 이러한 계산 결과를 그림 2c, d의 데이터에서 파생된 페르미 레벨 맵으로 표시합니다. 이들은 (예상대로) 대체로 동등하며, 현탁된 그래핀이 고유하다는 것을 나타냅니다(E F ~ 0) 그러나 구멍 농도가 증가합니다(E에 대한 최소값 산출 F 그래핀이 도파관 구조 상단에 위치하는 경우 약 - 0.2 eV). 반경이 r인 MRR의 유사한 분석 =20μm(여기에는 표시되지 않음)은 효과가 도파관 형상에 의존하지 않고 순전히 재료 의존적(기판) 도핑 효과임을 나타내는 매우 유사한 결과를 나타냅니다. 이 도핑의 원인은 거의 확실하게 실리콘/SiO2 사이의 계면에서 국부적으로 트랩된 정적 ad-charge의 결과입니다. 및 그래핀. 이러한 광고 요금의 밀도는 보다 적극적인 세척 처리를 받은 샘플에서 증가하는 것으로 알려져 있습니다(예:O2 우리가 사용한 플라즈마 에칭) [27]. 이 프로세스는 오염 물질이 비교적 없는 완전히 깨끗한 인터페이스를 제공하지만 이러한 손상으로 인해 효과적인 전하 캐리어 트랩으로 알려진 산소가 풍부한 개방형 쉘(댕글링 본드 유형) 결함이 발생할 수 있습니다.
(매핑에서) 대표적인 라만 산란 스펙트럼이 그림 3에 나와 있으며, 그래핀이 기본 실리콘 MRR 도파관 구조에 위치하는 G 및 2D 피크 주파수 모두에서 상향 이동을 보여줍니다.
<그림>대표적인 그래핀 G(왼쪽) 및 2D(오른쪽) 평균(n =3) 라만 산란 피크(633nm 여기) OFF(상단) 및 ON(하단) 기본 실리콘 MRR 도파관 구조. 선은 데이터에 대한 이중(G 피크) 또는 단일(2D 피크) 로렌츠 적합을 나타냅니다. 면내 E 축퇴도 감소로 인한 G 피크의 비대칭 2g 광 포논은 G + 라는 레이블이 붙은 고유한 산란 모드로 이어집니다. 및 G − (탄소 나노튜브에 사용되는 규칙에 따라)
그림>2D 피크가 잘 설명되어 있습니다(R 2 =0.993) 단일 층 그래핀의 시그니처인 단일 대칭 로렌츠 선 모양에 의한 것입니다[8]. 2D 피크에 대한 맞춤은 Voigt 함수를 사용하여 약간만 개선되었으며, 이는 기기에서 확장하는 데 약간만 기여함을 나타냅니다. 측정 가능한 변화(표준 오차 이상)는 ON-링 데이터와 OFF-링 데이터 사이의 2D 산란 모드의 FWHM에서 관찰되지 않았으며, 이는 이전 관찰과 일치하는 캐리어 농도에 대한 무감도를 나타냅니다[28].
반면에 G 피크는 OFF 및 ON 링 조건 모두에서 다소 비대칭이며 결과적으로 단일 대칭 기능으로 잘 설명되지 않습니다. 오히려 우리는 그것이 가장 잘 설명된다는 것을 발견했습니다(R 2 > 0.995) 이중 Lorentzian 선 모양에 의해 두 가지 별개의 산란 과정을 나타냅니다. 기본 너비(G + ) 피크는 ~ 25% 감소합니다(\( {\Gamma}_{\mathrm{OFF}}^{+} \) ~ 10 cm −1 , \( {\감마}_{\mathrm{ON}}^{+} \) ~ 7.5 cm −1 ) 부유 그래핀에서 MRR 도파관 구조에 의해 지지되는 곳으로 이동합니다. 이것은 그래핀 E의 '경직화'에 대한 현재의 이해 및 이전 관찰과 일치합니다. 2g 도핑의 결과로 발생하는 광 포논[8]. 두 번째 기본 산란 모드(G − ), 비대칭의 원인이 되는 , 또한 ~ 35%(\( {\Gamma}_{\mathrm{OFF}}^{-} \) ~20 cm −1 , \( {\감마}_{\mathrm{ON}}^{-} \) ~ 13 cm −1 ) 부유 그래핀에서 MRR 도파관 구조에 의해 지지되는 곳으로 이동합니다. 그래핀 라만 G 피크의 비대칭은 이전에 레이저 탐침 영역[28], 즉 서브-마이크론 규모 내에서 고도로 국부적인 전하 불균일성에 기인했으며, 부유 그래핀의 라만 스펙트럼과 지지된 그래핀의 라만 스펙트럼을 비교할 때 이미 관찰되었습니다. 기질에 의해 [22]. 나노구조 표면에 의해 지지되는 그래핀에 대한 최근 연구[29]에서도 G 밴드에서 다중 피크 미세 구조가 밝혀졌는데, 이는 단일벽에서 관찰되는 것과 유사한 극단적인 곡률 또는 '주름'의 결과로 해석됩니다. 탄소나노튜브(SWCNT). 이 경우, 평면 내 E 2g 광학 모드는 나노튜브 축을 따라 있는 포논인 \( {\omega}_G^{+} \)와 이에 수직인 포논 사이에서 분할될 수 있습니다. \( {\omega}_G^{-} \) 분할 정도, \( \Delta {\omega}_G={\omega}_G^{+}-{\omega}_G^{-} \), 나노튜브 크기(즉, 곡률 정도)의 강력한 함수 , 외부적으로 적용된 변형이 없는 경우에도 [30]. G 피크 분할은 또한 일축 변형 하에서 그래핀에서 관찰되었고[5] 곡률에 민감한 더 낮은 주파수(G - ) 산란 모드 자체는 나노튜브가 높은 압력 하중 하에서 구부러지고 붕괴될 때 확장되고 심지어 분할될 수 있습니다. 여기에서 그래핀 G 밴드 스펙트럼을 피팅하면 두 주파수 차이 Δω G 및 G - 의 선 너비 모드(\( {\Gamma}_{\mathrm{OFF}}^{-} \))는 ON-링의 경우보다 일시 중단된 OFF-링 조건에서 더 큽니다. 전체 순 변형에 대한 증거(피크 위치에서)가 없는 경우, 우리는 이것이 그래핀이 있는 곳에서 '매끄러워진' 부유 영역에 국부적인 면외 주름의 결과일 수 있다고 추측합니다. 잘 정의된 기본 서브 마이크론 MRR 도파관 구조에 의해 지원되며, 이는 더 작은 Δω를 설명합니다. G 그리고 더 좁은 G − 여기에서 관찰되는 피크입니다.
우리는 또한 피크 강도의 비율을 조사했습니다. I 2D /나 G , 이는 캐리어 농도 의존적인 것으로 알려져 있으며, 고유 경우에 대해 최대이고 증가함에 따라 지속적으로 감소합니다(둘 다 n 그리고 p ) 도핑 레벨, 주로 캐리어-포논 산란 증가와 함께 2D 모드의 퀜칭으로 인해 [22, 32]. 그러나 I 2D /나 G , 그래핀이 도파관 구조에서 ~ 2.5로 매달려 있는 ~ 3에서, 우리는 이 변화가 동일한 여기 레이저 파장에 대한 다른 보고서[28]와 비교할 때 관찰한 G 피크 이동 정도에 대해 작다는 점에 주목합니다. 633nm). [28]에서 I 2D /나 G 여기 파장에 따라 증가하는 것으로 보이는 함수 G 피크 위치는 이것만으로는 절대 도핑 수준, 특히 낮은 도핑 한계에서 가장 신뢰할 수 있는 지표가 아닐 수 있습니다.
총 통합 피크 강도의 비율 분석, A G /A 2D 피크 너비와 피크 높이의 변화를 고려한 는 Eq.에서 직접 캐리어 농도를 얻는 데 사용할 수 있습니다. (3) [22, 32]:
$$ \surd \frac{{\mathit{\mathsf{A}}}_{\mathsf{\mathsf{G}}}}{{\mathit{\mathsf{A}}}_{\mathsf{2} \mathit{\mathsf{D}}}}=\mathit{\mathsf{C}}\left[{\gamma}_{\mathit{\mathsf{e}}-\mathit{\mathsf{ph}}} +\left|{\mathit{\mathsf{E}}}_{\mathsf{\mathsf{F}}}\right|\mathit{\mathsf{f}}\left(\frac{{\mathit{\ mathsf{e}}}^{\mathsf{2}}}{\varepsilon {\mathit{\mathsf{v}}}_{\mathit{\mathsf{f}}}}\right)\right] $$ (삼)여기서 C 상수입니다. 이 전자 요금입니다. γe-ph 이전에 [32]에서 ~ 33meV로 결정된 평균 전자-음자 산란율입니다. ε(~ 3.9)는 SiO2의 유전 상수입니다. 이는 실리콘과 그래핀 사이의 계면(네이티브 산화물 층으로)에 존재하는 것으로 가정된다. 이것은 f를 산출합니다. (e 2 /εν f ) ~ ν f일 때 0.069 전자 속도, 1.17 × 10 8 cm/s. 우리의 측정은 중앙 부유 영역에 비해 그래핀이 밑에 있는 실리콘 도파관 구조 위에 위치하는 곳에서 더 높다는 것을 나타내며, 이는 관찰된 라만 스펙트럼 이동이라는 가설을 다시 뒷받침합니다. 기판 도핑 효과의 결과입니다. 그림 4는 그래핀 G와 2D 모드의 통합 강도 비율과 식에서 결정한 페르미 준위를 보여줍니다. (3) 그래핀 통합 MRR 장치(10 및 20μm 반경 모두에 대해)의 긴 섹션 중앙을 가로질러 만들어진 공간 라인 스캔을 따른 위치의 함수. 피크 페르미 레벨 이동은 그래핀이 기본 실리콘 도파관 구조에 있는 위치와 ~ 0.2eV인 위치와 일치합니다. 이는 피크 이동에서 결정한 것과 백게이트 그래핀 전계 효과 트랜지스터에 대해 이전에 결정한 것과 일치합니다[17]. . 우리가 연구한 다양한 장치 기하학에도 불구하고 10μm 반경 구조(~ 54μm 부유 그래핀과 ~ 36μm), 로컬 공간 도핑 패턴은 그림 4의 가우시안 피팅에 의해 밝혀진 바와 같이 사실상 동일합니다.
<그림>(상단) 10μm 및 (하단) 20μm 반경에 대한 라인 스캔을 따른 공간 좌표의 함수로 결정된 그래핀 페르미 수준(\( \surd \frac{A_G}{A_{2D}} \)에서) MRR 장치(하단 x의 나누기에 유의하십시오. -중심선). 장치에서 라인 스캔 데이터를 가져온 위치와 비교를 위해 적합(가우스) 피크 통합 영역 및 너비가 표시됩니다.
그림>우리가 결정한 페르미 준위를 캐리어 농도로 변환, n 식을 통해 (4) [33]은 n에 대한 피크 값을 산출합니다. ~ 3 × 10 12 cm −2 일반적으로 이전 보고서와 잘 일치하는 MRR 구조에 대해 [26]:
$$ \mathit{\mathsf{n}}={\left(\frac{{\mathit{\mathsf{E}}}_{\mathit{\mathsf{F}}}}{\hslash {\nu} _{\mathit{\mathsf{F}}}}\right)}^{\mathsf{2}}/\pi $$ (4)마지막으로 Lee et al.에 의해 도입된 소위 벡터 분해 플롯에서 측정된 데이터(3개의 라인 스캔)에서 G와 2D 피크 위치 간의 상관 관계를 조사했습니다. [34], 그림 5.
<그림>그래핀 통합 MRR에 대한 3가지 라인 스캔 측정에 대한 데이터를 보여주는 G-2D 상관 관계 플롯. 빨간색 십자형은 그래핀이 MRR 구조 위에 위치하며 보라색 점은 이러한 좌표 값의 평균을 나타내고 파란색 십자형은 그래핀이 MRR(기본 구조 OFF)에 걸쳐 매달려 있는 지점입니다. 빨간 점은 원점을 정의하는 633nm 레이저 여기를 사용하는 그래핀의 변형되지 않은 고유 좌표 값입니다. 점선은 변형률이 없음을 나타냅니다(p -doping) ∆ω2D 벡터 /∆ωG ~ 0.7, 실선은 ∆ω2D인 무도핑(변형) 벡터를 나타냅니다. /∆ωG ~ 2.2, [34] 이후
그림>이러한 유형의 플롯에 데이터를 표시하면 피크 이동이 변형에 의해 영향을 받을 수 있는 정도를 결정할 수 있습니다. 이것은 변형률에 대한 피크 위치 비율의 변화율(∆ω 2디 /∆ω G ~ 2.2) 도핑과 관련된 것과 매우 다릅니다(∆ω 2디 /∆ω G ~ 0.7) [34]. 따라서 G-2D 공간의 모든 좌표점은 변형률, 특히 p로 분해될 수 있습니다. -유형 도핑 벡터. 인장 변형률 또는 p가 증가함에 따라 -도핑, ω G , ω 2디 좌표 값은 도핑이 없는(변형) 또는 변형이 없는(p -도핑) 라인, 각각. G-2D 좌표 공간은 이러한 변형 및 도핑 벡터에 의해 4개의 사분면(Q1–Q4)으로 나뉘며, 따라서 이러한 선에서 좌표 데이터의 상당한 편차(예:영역 Q1(Q4))는 피크 이동이 다음과 같다는 것을 나타냅니다. 압축(인장) 변형률 및 p 조합의 결과 -도핑. n- 그리고 p -도핑은 G 피크 위치의 증가에서만 나타납니다.
고유한 변형되지 않은 그래핀 피크 주파수 좌표를 원점(빨간 점)[9, 26]으로 정의하고 변형이 없는(p -도핑) 벡터(점선) 및 도핑 없는(변형) 벡터(실선), [31] 이후. 세 가지 서로 다른 라인 스캔에 대한 데이터는 OFF 링의 원점 주변과 변형률 프리를 따라 흩어져 있습니다(p -doping) 평균 ON-링 좌표 값(보라색 점)이 (1584.9, 2642.4)인 ON-링에 대한 벡터. 스트레인 프리 라인을 따라 ON-링 데이터에 대한 증가된 산란은 상대적인 피크 이동에서 감지된 도핑 수준의 더 넓은 범위를 나타냅니다. 이는 기본 서브 마이크론에 의해 생성된 고도로 국소화된 기판 도핑 효과를 조사할 때의 불확실성 때문일 수 있습니다. 프로브 레이저 스폿 크기(> 1 μm)와 비교한 도파관 너비. 데이터의 명백한 산포에도 불구하고 Q4와 Q1 모두에 평균 ON-링 좌표가 변형률이 없는 선에 너무 가깝기 때문에 중요한 전역 변형 효과를 할인합니다. 우리는 우리가 관찰한 피크 이동이 실리콘 기판 유도 정공 도핑 때문이라고 제안하며 평균 ON-링 G-2D 좌표는 이것이 (2에서 3) × 10 12 cm −2 .
섹션>요약하면, 단층 CVD 그래핀은 실리콘 도파관 기반 MRR 광소자와 통합되었습니다. 특성 그래핀 Raman G 및 2D 피크의 주파수 이동 및 통합 강도는 매핑된 영역에 대해 결정되었으며, 이는 기본 실리콘에서 의도하지 않은 홀 도핑의 결과로 그래핀이 Si MRR 구조에 위치하는 페르미 레벨 '피닝'을 나타냅니다. /SiO2 도파관(기판 도핑 효과). 매달린 영역에 대한 데이터는 고유 그래핀과 측정 가능한 차이를 나타내지 않지만, 지지된 영역에 대해 ~ 3×1012 cm −2 . 그래핀의 현탁 여부에 따라 달라지는 라만 G 피크의 비대칭은 도핑으로 인한 '경직화'와 E 2g 광학 모드. 이러한 효과는 그래핀이 실리콘 포토닉스 플랫폼과 결합될 때, 특히 그래핀의 특성을 결정하고 광학 변조기 및 센서와 같은 미래의 그래핀 통합 실리콘 포토닉스 장치를 최적화하기 위해 이러한 플랫폼을 사용하려고 시도할 때 고려해야 합니다.
섹션>충전 결합 장치
Commissariat à l'energie et aux energies Alternatives–laboratoire d'électronique des technologies de l'information
상보성 금속 산화물 반도체
화학 기상 증착
이중 공명
최대 절반에서 전체 너비
마이크로 링 공진기
N-메틸-2-피롤리돈
실리콘
이산화규소
단일벽 탄소나노튜브
나노물질
초록 PIT(plasmonically induced transparent) 효과를 구현하기 위한 일반적인 플라즈몬 시스템은 주로 하나의 단일 결합 경로만 허용하기 때문에 하나의 단일 PIT만 존재합니다. 이 연구에서 우리는 두 개의 전환 가능한 PIT 효과를 달성하기 위해 유전체 격자가 장착된 그래핀 층 공진기와 결합된 그래핀 나노리본(GNR)으로 구성된 별개의 그래핀 공진기 기반 시스템을 제안합니다. 공진기의 교차 방향을 설계함으로써 제안된 시스템은 서로 다른 공진 위치와 선폭을 특징으로 하는 두 가지 서로 다른 PIT 효과가
실패 분석 장비 구성 요소 및 조립품 또는 산업 구조의 고장은 인명 손실, 예정에 없던 가동 중단, 유지 관리 및 수리 비용 증가, 소송 분쟁의 피해를 유발할 수 있습니다. 장애로 인한 문제의 향후 재발을 방지하려면 각 장애에 대한 조사를 수행하는 것이 중요합니다. 실패에 대한 조사를 수행하는 것을 실패 분석이라고 합니다. 고장 분석은 데이터를 수집하고 분석하는 프로세스로, 원하지 않는 기능 손실이나 장비 구성 요소 및 어셈블리 또는 구조의 고장을 일으킨 원인이나 요인을 파악하기 위해 수행됩니다. 물리적 조사를 포함하는