표적 TL 세포의 3D 궤적. 주파수 변조로 인한 주기적 U-턴은 FM-DEP를 겪는 TL 셀에 대해 시연됩니다.
그림>
추가 파일 1:영화 S5 및 S6과 그림 2에서 주기적 궤적이 미세 전극에서 출발, 접근 및 체류의 세 부분으로 구성되어 있음을 알 수 있습니다. (i) 세포가 미세 전극을 떠남, (ii) 그것은 U-턴을 한 후 미세 전극에 접근하고 (iii) 미세 전극 표면에 머문다. 추가 파일 1:Movie S6에서 관찰될 뿐만 아니라 <x 방향은 Fig. 2와 같다. 용매 흐름의 간섭에도 불구하고 세포가 미세전극 표면을 떠나기 시작하는 순간과 주기적인 궤적으로 U-turn을 하는 순간을 각각 구별할 수 있다. 따라서 우리는 그림 2에서 이러한 U턴이 0.25Hz의 변조 주파수 또는 순시 주파수 f 의 4초 주기와 일치하여 4초 간격으로 반복됨을 알 수 있습니다. (그 ).
이론적인 모델. 유전율과 전도도가 ε 인 균일 구 모델로 모델링된 셀에 가해진 FM-DEP 힘의 도식적 표현 안에 및 σ 안에 , 각각. 구체는 유전율과 전도율이 ε 인 전해질 매체로 둘러싸여 있습니다. 밖 및 σ 밖 , 각각. 균일 구 모델은 세포를 막으로 둘러싸인 얼룩진 세포질로 간주하는 구형 단일 껍질 모델을 단순화한 것입니다 [9]
그림> $$\begin{array}{@{}rcl@{}} \boldsymbol{p}(\boldsymbol{r},t)&=&4\pi R^{3}\epsilon_{\text{out}}K_ {H}\left\{\boldsymbol{E}(\boldsymbol{r},t)+\frac{\tau}{\Delta\tau} \widetilde{\boldsymbol{E}}(\boldsymbol{r}, t)\right\}, \end{array} $$ (4) $$\begin{array}{@{}rcl@{}} \widetilde{\boldsymbol{E}}(\boldsymbol{r},t )&=&\frac{1}{\tau}\int_{0}^{tds}\,\boldsymbol{E}(\boldsymbol{r},ts)e^{-s/\tau}, \end {배열} $$ (5)
다음으로, 우리는 Eqs에 의해 주어진 위상을 연결하여 FM-DEP를 고려합니다. (1) 및 (2)를 식으로 (3) ~ (5). 추가 파일 2에서 입증된 바와 같이 FM파의 WBL 조건은 Eq.에서 적분의 대략적인 형태를 검증합니다. (5) 따라서
$$ \left<\widetilde{\boldsymbol{E}}\cdot \nabla\boldsymbol{E}\right>=\frac{1}{1+\{2\pi f(t)\tau\}^{ 2}}\left(\frac{\nabla\boldsymbol{A}^{2}_{\text{RMS}}}{2} \right), $$ (8)
식과 유사한 형태이다. (6) AC-DEP의 경우. 차이점은 χ 의 계수가 {f (그 )}는 t 에 따라 다릅니다. f 를 통해 (그 ), T 주기로 주파수 변조에 따라 주기적으로 변경 m =1/f m .
FM-DEP의 간단한 식 (9)를 바탕으로 FM파로 인한 위의 U턴 메커니즘을 그림 4와 같이 설명합니다. 그림 4는 f (그 ) 크로스오버 주파수 f 를 다룹니다. X f ㄷ -Δ f ≤f X ≤f ㄷ +Δ f . 그림 4에서 CM 요인의 실수 부분의 주파수 의존성 또는 χ {f (그 )}, 다음과 같이 대체 기호 변경을 제공합니다. 빼기 기호(χ {f (그 )}<0) f (그 )<f X 및 더하기 기호(χ {f (그 )}>0) f (그 )>f X , 우리 실험의 경우입니다. f 를 만족하는 이전 기간 (그 )<f X 지속 시간이 있는 반면 후자는 <>f (그 )>f X 나머지 기간 동안 유지되었습니다. 한 주기는 그림 4에서 각각 빨간색과 파란색으로 표시된 두 개의 기간으로 분류됩니다.
<그림>
주파수 변조와 관련된 힘 방향. 시간 종속 주파수가 f 인 FM파로 인한 주기적인 U턴의 그림 (그 ) 크로스오버 주파수 커버링 f X
그림>
AC-DEP와 유사하게 Eq. (9) 빼기 기호(χ {f (그 )}<0) f (그 )<f X . 결과적으로 세포는 전기장의 크기가 가장 큰 미세 전극 바늘 팁 주변 영역을 떠납니다. 세포는 Δ 의 빨간색 기간 동안 음의 DEP를 경험합니다. 그 n 4. t 순간 X f 의 솔루션으로 (그 X )=f X , χ (f ) 사라지고 기호가 χ 로 바뀝니다. (f )>0 동안 f (그 )>f X , 그리고 상응하게 DEP 힘은 t 에서 인력으로 전환됩니다. X . t 에서 유턴 후 X DEP 힘 방향의 반전으로 인해 표적 세포는 반대 방향으로 이동하는 미세 전극에 접근하기 시작하고 결국 전극 바늘의 끝 사이에 갇히거나 전극 중 하나에 부착됩니다. 세포는 동안 양의 DEP를 경험합니다. Δ 의 파란색 기간 그 p 그림 4는 T 의 변조 주기로 미세전극을 떠나고, 접근하고, 머무르는 주기를 반복해야 함을 나타냅니다. m , 그림 2와 일치:Δ 그 n +Δ 그 p =티 m . 따라서 그림 4에 묘사된 유전영동 메커니즘은 추가 파일 1:영화 S5 및 S6과 그림 2에서 관찰된 주기적인 U-턴을 설명할 수 있습니다.
방정식 f 의 주기적인 해를 고려해 보겠습니다. (그 X )=f X . 도 4에서 보는 바와 같이, t X t 로 표현됩니다. X =n 티 m +0.5Δ 그 p =n 티 m +0.5(T m -Δ 그 n ) n 정수 사용 =0, ±1, ±2,⋯,
$$ 2\pi f_{m} t_{X}=(2n+1)\pi-\pi f_{m}\델타 t_{n}. $$ (10)
식 대입 (10) 식으로 (2) n =0
$$ f_{X}=f_{c}-\Delta f\cos\left(\pi f_{m}\Delta t_{n}\right), $$ (11)
지속 시간이 Δ 인 경우 FM-DEP 방법이 크로스오버 주파수를 결정함을 명확히 합니다. 그 n 미세전극 이탈부터 U턴까지 정밀하게 측정할 수 있습니다.
FM- 및 AC-DEP에서 결정된 단일 MLV의 교차 주파수 비교
우리는 Eq.의 실험 정확도를 조사했습니다. (11). 실험적으로는 생물학적 세포가 전해질에 분산되어야 하는 경우가 많습니다. 그러나 MLV의 경우 재수화 및 희석 준비 과정에서 탈이온수를 사용할 수 있습니다. 따라서 AC-DEP와 FM-DEP에서 결정된 크로스오버 주파수를 비교하기 위해 무염 MLV 서스펜션을 사용했습니다.
표적 MLV의 유전영동 U-턴은 10kHz ≤f 범위의 FM파에 의해 유도되었습니다. (그 )≤ 50kHz(즉, f ㄷ =30kHz 및 Δ f =20 kHz) f m =0.1Hz이고 이에 따라 FM-DEP는 10초 주기를 갖습니다. 실험에서 타겟 MLV의 몇 가지 U턴이 미세전극을 떠나는 것부터 접근하는 것까지 관찰하는 데 30초 미만이 걸립니다. From the trajectory, we obtained the mean leaving time that \(\overline {\Delta t_{n}}=5.8\pm 0.2\) s. Because the WBL condition applies to the present experiment satisfying that f m /Δ f /f m , f <서브>, 나 /f (그 )<10
−5
, the crossover frequency was evaluated to be f X =35±1 kHz from substituting \(\overline {\Delta t_{n}}=5.8\pm 0.2\) s into Eq. (11).
For comparison, we made use of the programmable manipulator in the AC-DEP method that tries to evaluate the crossover frequency of the same targeted MLV to which the sinusoidal electric field with a frequency in the range of 30 to 100 kHz was applied via the electrode needle pair for inducing the AC-DEP. Because the programmable manipulator carries the electrode needle pair at a constant speed in one direction, we can measure the dielectrophoretic force similarly to the laser-trapping experiments [39]. Attaching the MLV on an electrode tip that undergoes uniform linear motion, not only the AC-DEP force but also the hydrodynamic force caused by the one-dimensional motion are exerted on the MLV. With the gradual increase of electrode velocity, F DEP eventually becomes smaller than the hydrodynamic force. As a result, the MLV initially attached to the moving electrode, owing to the DEP attraction, is desorbed by the hydrodynamic force. Defining the critical value, v ㄷ , by the maximum velocity value of the microelectrode pair prior to the desorption, the force balance equation between the DEP and hydrodynamic forces reads [39]
$$ F_{\text{DEP}}(f_{\text{AC}})=6\pi\eta R v_{c}, $$ (12)
여기서 F DEP (f AC )e ≡<F DEP > with the unit vector e defined by \(\boldsymbol {e}=\nabla {\boldsymbol {A}}^{2}_{\text {RMS}}/|\nabla {\boldsymbol {A}}^{2}_{\text {RMS}}|\), η the water viscosity at 25 °C and 2R the diameter of the MLV.
Additional file 1:Movies S7 and S8 demonstrates the force measurement using the above AC-DEP method at the applied frequency of f AC =60 kHz. In Additional file 1:Movie S7, the velocity of the electrode pair controlled by the programmed manipulator is 110 μ m/s, which is lower than v ㄷ ; therefore, the MLV remains attached to one part of the electrode pair owing to the dielectrophoretic attraction. Additional file 1:Movie S8, on the other hand, shows the higher electrode speed of 120 μ m/s, under which the dielectrophoretic force becomes smaller than the hydrodynamic force that is exerted on the MLV, thereby desorbing the MLV from the electrode. Accordingly, v ㄷ is evaluated to be 110 μ m/s ≤v ㄷ ≤ 120 μ m/s, and we can calculate F DEP (60 kHz) using Eq. (12).
We can determine f X from the experimental results of F DEP at various external frequencies. Figure 5 shows the frequency dependence of F DEP , indicating that the DEP force experienced by the MLVs was reduced by lowering the applied frequency. It is found from Eqs. (6) and (7) that the fitting function of F DEP (f AC ) can be expressed as
$$ F_{\text{DEP}}(f_{\text{AC}})=\frac{L+(2\pi f_{\text{AC}}\tau)^{2}H}{1+(2\pi f_{\text{AC}}\tau)^{2}}, $$ (13)
Frequency dependence of F DEP . The FM-DEP force (F DEP ) as a function of external frequency (f AC ) of applied AC field where F DEP has been evaluated from Eq. (12), the balance equation between the FM-DEP and hydrodynamic forces exerted on a single MLV. It can be seen that F DEP is increased and saturated as f AC is higher, reflecting a typical behavior of the relaxation spectrum of the real CM factor. The solid line represents the best-fit result of Eq. (13)
그림>
implying that
$$ f_{X}=\frac{1}{2\pi\tau}\sqrt{-\frac{L}{H}}. $$ (14)
Equation (13) is depicted by the solid line in Fig. 5 that has been fitted to the experimental data using the best-fit results of three parameters:L =−21.02 pN, H =19.03 pN, and τ =4.9 μ 에스. Substituting these results into Eq. (14), we evaluate that f X =34.15 kHz, which coincides with the result of f X =35±1 kHz evaluated from the FM-DEP method. The FM-DEP method is thus validated in terms of the consistency with the direct force measurement using the AC-DEP method.
Conductivity Dependencies of the Crossover Frequencies for Biological Cells
Let us return to the dielectrophoretic U-turns of biological cells mentioned in Fig. 2 to assess the practical reliability of the crossover frequencies when the FM-DEP method is applied to cell suspensions. Recently, an elaborate theory [40] has investigated, in more detail than before, the relationship between the homogeneous sphere model (see Fig. 3) and the single-shell model where the inner structure of cell is represented by a smeared-out cytoplasm surrounded by a membrane. As a result, the relation between f X and the suspension conductivity σ out has been formulated using radius R of a cell, membrane capacitance C m , and cytoplasmic conductivity σ cyt [40]:
$$ f_{X}=\frac{1}{\sqrt{2}\pi {RC}_{m}}\left(\sigma_{\text{out}}-\frac{1}{2\sigma_{\text{cyt}}} \sigma_{\text{out}}^{2} \right)+f_{X0}, $$ (15)
where f X 0 is the extrapolated value to the crossover frequency at σ =0 mS/m and will be treated as a fitting parameter herein. The elaborate treatment adds the squared term, the second term on the right hand side of Eq. (15), to the conventional linear relation which has mainly been used for evaluating C m from f X [40–45]. Theoretically, it has still been claimed [40] that Eq. (15) is valid within a lower range of σ out such that σ out <10 mS/m; however, it should be better to include the squared term in the evaluation of C m , considering that our range of σ out is relatively high compared with previous results in the range of 10 mS/m ≤σ out ≤ 100 mS/m [40–45]. Hence, we determined σ cyt as well as C m from fitting Eq. (15) to the experimental results of f X as an increasing function of σ out .
There are three kinds of biological cell used:TL and BL cells of human leukemia and RB cells of three human volunteers. In all the experiments using any species of cell, the conductivities were within the range of 60 to 160 mS/m, and the modulation frequency was set to be 0.25 Hz. Regarding the instantaneous frequency, most of the experiments adopted the range from 100 to 1.5 MHz (i.e., f ㄷ =800 kHz and Δ f =700 kHz); exceptionally for leukemia cells, the frequency range was extended to 50 kHz ≤f (그 )≤1550 kHz (i.e., f ㄷ =800 kHz and Δ f X =750 kHz) in the conductivity range of 60 mS/m≤σ ≤80 mS/cm because f X in this σ -range has been found to be lower than 100 kHz, and we were unable to observe the DEP U-turns in the range of 100 kHz ≤f (그 )≤1500 kHz. Both of these frequency sets satisfy the WBL condition of Δ f /f m , f (그 )/f m <10
−5
as before.
Each time we measured the leaving times of cells dispersed in a suspension, we looked for an appropriate spot at which a few cells having a similar size could simultaneously experience the FM-DEP above the substrate, and the microelectrode tips were placed at the measurable position using the micromanipulator. We continued such scanning inside the cell suspensions until the FM-DEP trajectories of 10 cells were collected in total at a couple of appropriate positions. For each kind of cell, the measurement of 10 cells was repeated twice using different drops of the same cell suspension. As mentioned, it is indispensable for the implementation of the FM-DEP measurement at each spot to suppress the electrically induced solvent flows as much as possible. Hence, we traced only two cycles of the U-turn path so that the duration time of applying the electric field could be adjusted to be less than 10 s, and, correspondingly, the leaving time of each cell is given as the average of each trajectory, including the two U-turns. The mean leaving time \(\overline {\Delta t_{n}}\) of each cell suspension is thus obtained from averaging the leaving times of 20 cells. Particularly for human RB cells, we further averaged three sets of the mean crossover frequencies obtained for three RB cell suspensions of three human beings, supposing that cells of the same species are similar in C m 및 σ cyt as well as in R . The two-step averaging of Δ 그 n will be denoted by \(\left <\overline {\Delta t_{n}}\right>\). Substituting into Eq. (10) the experimental data of either \(\overline {\Delta t_{n}}\) or \(\left <\overline {\Delta t_{n}}\right>\), the mean crossover frequency <f X > was obtained.
Figure 6 shows the σ out -dependencies of <f X > measured for the above three kinds of biological cells using the FM-DEP method. The solid lines in Fig. 6 depict the best-fit results of Eq. (15). We evaluated C m 및 σ cyt from the best fitting of Eq. (15) into which the observed radii (R obs ) were inserted. Table 1 lists the fitting results of C m 및 σ cyt , where we used the observed radii of 10 μ 나 ≤ 2R obs ≤ 15 μ m for TL and BL cells, and 7.5 μ 나 ≤ 2R obs ≤ 10 μ m for RB cells in evaluating C m . It is to be noted from Table 1 that different species have different membrane capacitances, which are in good agreement with those reported in the literature [40–47]; the C m values of RB cells with stationary whole blood samples from normal (healthy) donors are in excellent agreement with our value [46, 47], but are substantially higher than those of washed RB cells in isotonic buffered saline as noted in [47]. The best-fit results simultaneously provided cytoplasmic conductivities, which were consistently similar as seen from Table 1, but were slightly lower than the range of previous reports that 0.2 S/m ≤σ cyt ≤1 S/m [40, 45, 48–51]. These results support that the FM-DEP method retains the practical reliability needed for the treatment of living cells.
Conductivity dependences of crossover frequencies. Mean crossover frequency, <f X >, of TL cells (blue triangles), BL cells (green diamonds), and RB cells (red circles) varying with increase of solution conductivity σ out . The best-fit results of Eq. (15) are delineated by the solid lines
그림> 그림> 섹션> 결론
Our theoretical treatment of the FM-DEP has mainly focused on the WBL condition. In this limit, we have proved theoretically that the direction of the FM-DEP force switches each time when the instantaneous frequency of the FM wave traverses the crossover frequency, thereby implying the periodic U-turns of micro/nanoparticles that undergo the FM-DEP. Two kinds of experiment have demonstrated the accuracy and reliability of f X obtained from the observed trajectories of MLVs and cells using our formulation of the FM-DEP (Eqs. (9) and (11)):While the f X evaluated from the FM-DEP of a single MLV coincides with that obtained from the force measurement of the same MLV experiencing AC-DEP, the conductivity dependencies of f X provide the membrane capacitances of various cells that are in close agreement with the literature values. In other words, it has been validated theoretically and experimentally that the FM-DEP in the WBL limit can be mimicked by the time-varying AC-DEP induced by the AC wave with its frequency changing continuously according to the periodic function of f (그 ). The simple view applies to other electrokinetics, including the twDEP and the electrorotation by applying the FM wave that has the spatial dependence of the phase as well as the magnitude. The AC- and FM-DEPs are associated with the real part of the dielectric spectra (or the CM factor), whereas the electrokinetics due to the spatial gradient of the phase reflect the imaginary part of the CM factor as mentioned before. Therefore, the application of the FM wave to either twDEP or electrorotation will be required for completing the dielectric characterization (the dielectric spectroscopy, in general) using the electrokinetics.
We have treated microparticles such as MLVs and cells for the precise tracking of particle trajectories. In these experiments, sedimented particles as well as floating ones have been observed; we need to increase the magnitude of electric field for inducing the DEP of the sedimented particles which are likely to be aggregated. Accordingly, we have used the plug-in system for applying the FM wave to a targeted particle floating above the substrate.
It is promising to further develop the FM-DEP method for smaller particles with their sizes of submicron to nanoscale, such as dispersed carbon nanotubes, thereby opening up the possibility of real-time spectroscopy using the FM-DEP as described below. When we apply the FM wave to the smaller colloids using the on-chip systems whose electrode configuration is designed to create a constant gradient of the applied electric field, the time-varying velocity vector v (그 ) of the FM-DEP caused by the time dependence of the FM-DEP force is ascribed to the variation in χ (f ) (or the real part of the CM factor):it is found from Eqs. (9) and (12) that
$$ \boldsymbol{v}(t)=\frac{\nabla\boldsymbol{A}^{2}_{\text{RMS}}}{6\pi\eta R}\chi\{f(t)\}. $$ (16)
Hence, measuring the velocity vector v (그 ) of a submicron to nanoparticle could provide the frequency dependence of the real part of the CM factor directly, which would be nothing but the electrokinetic FM spectroscopy.
섹션> 약어 AC:
Alternating current
BL:
B cell leukemia
CM:
Clausius-Mossotti
DEP:
Dielectrophoresis
DOPC:
1,2-Dioleoyl-sn-glycero-3-phosphatidylcholine
FM:
Frequency modulated
MLV:
Multilamellar vesicle
RB:
Red blood
RMS:
Root mean squared
TL:
T cell leukemia
twDEP:
Traveling wave dielectrophoresis
WBL:
Wide band limit
섹션>