산업 제조
산업용 사물 인터넷 | 산업자재 | 장비 유지 보수 및 수리 | 산업 프로그래밍 |
home  MfgRobots >> 산업 제조 >  >> Industrial materials >> 나노물질

직접 메탄올 연료 전지 응용 분야를 위한 다양한 탄소 지지체 및 전도성 중합체에 대한 백금 기반 촉매:검토

초록

백금(Pt) 기반 나노 입자 금속은 상당한 관심을 받아 왔으며 직접 메탄올 연료 전지(DMFC)에 가장 널리 사용되는 촉매입니다. 그러나 Pt 촉매의 높은 비용, 느린 운동 산화 및 메탄올 산화 반응(MOR) 동안 CO 중간 분자의 형성은 단일 금속 Pt 촉매와 관련된 주요 문제입니다. 최근 연구는 Fe, Ni, Co, Rh, Ru, Co 및 Sn 금속과 같은 Pt 합금이나 Pt의 촉매 성능을 향상시키기 위한 탄소 지지체 재료를 사용하는 데 중점을 두고 있습니다. 최근 MWCNT, CNF, CNT, CNC, CMS, CNT, CB 및 그래핀과 같은 탄소 재료의 잠재력이 큰 Pt 및 Pt 합금 촉매는 우수한 MOR에 기여할 수 있는 상당한 특성으로 인해 주목받고 있습니다. 및 DMFC 성능. 이 검토 보고서는 DMFC에서 Pt의 사용을 줄이고 안정성을 개선하며 Pt의 전기 촉매 성능을 향상시키는 것과 관련된 상기 합금 및 지지체 재료의 개발을 요약합니다. 마지막으로 형태, 전기촉매 활성, 구조적 특성 및 연료 전지 성능 측면에서 각 촉매 및 지지체에 대한 논의가 제시됩니다.

소개

연료 전지 기술은 전 세계적으로 널리 주목받고 있습니다. 연료전지(FC)는 전기화학 반응을 통해 화학 에너지를 전기 에너지로 변환하는 유망한 대체 발전 기술이다[1, 2]. 또한 연료전지 기술의 경우 연료전지 기술의 주요 초점은 저비용 생산을 통해 연료전지 시스템의 강력한 성능을 달성하고 내구성 있는 재료를 찾는 것입니다. 그럼에도 불구하고 현재 연료전지 기술에서 발생하는 공통적인 문제는 시스템이 높은 고유 비용과 열악한 내구성을 수반한다는 것입니다[1]. 연료 전지로서의 가능성에도 불구하고 직접 메탄올 연료 전지(DMFC)는 과제와 한계가 있어 연구자들이 DMFC 효율과 성능을 개선하기 위한 방법을 연구하도록 합니다. DMFC의 많은 문제가 확인되었으며 양극 전극에서 음극 전극으로의 메탄올 연료 교차 [3,4,5] 느린 속도, 촉매의 불안정성, 열 및 물 관리로 인한 성능 저하를 포함하여 해결되지 않은 상태로 남아 있습니다. [6,7,8].

최근 연료전지 기술로 각광받고 있는 DMFC, PEMFC(Proton Exchange Membrane Fuel Cell), SOFC(Solid Oxide Fuel Cell) 등 연료전지에 대한 연구가 많이 진행되고 있다. 새로운 에너지원으로서 DMFC는 이동 및 고정 애플리케이션에 사용할 수 있습니다[9, 10]. 연료 전지 분야에서 많은 연구 발전이 이루어졌습니다. 연료전지 중 DMFC는 높은 출력밀도, 연료 취급 용이성, 충전 용이성, 낮은 환경 등 많은 장점으로 인해 최근 몇 년 동안 광범위하게 연구되고 있다[11,12,13,14,15,16]. 영향 [17, 18]. 그러나 메탄올 크로스오버, 낮은 화학 반응 속도 및 촉매 중독을 포함하여 DMFC의 상업화에 대한 몇 가지 기술적 과제는 해결되지 않은 채로 남아 있습니다. 그러나 DMFC는 여전히 많은 연구자들의 관심을 받고 있으며 저온 작동(DMFC 시스템은 373K에서 작동) 때문에 가장 인기 있는 연료 전지가 되었습니다. DMFC의 높은 에너지 효율과 빠른 시동 시스템의 장점으로 인해 DMFC 기술은 주거용 전원, 모바일 장치의 배터리 및 차량 연료로 적용하기에 매우 적합합니다[19,20,21,22]. 또한 불안정한 에너지원에 대한 의존도를 최소화하기 위해 DMFC의 개념을 추가로 연구하여 천연가스 및 바이오매스와 같은 대체 연료원을 찾고 농산물을 발효시켜 에탄올을 생산할 수 있습니다[14].

DMFC에서 양극 쪽에는 이산화탄소(CO2)로 전기산화되는 메탄올 용액이 공급됩니다. ) 아래 반응을 통해:

$$ {\mathrm{CH}}_3\mathrm{OH}+{\mathrm{H}}_2\to {\mathrm{CO}}_2+6{\mathrm{H}}^{+}+6{ \mathrm{e}}^{\hbox{-} } $$ (1)

음극 쪽에서 양성자일 때 산소(공기에서)는 물로 환원됩니다.

$$ 3/2\ {\mathrm{O}}_2+6{\mathrm{H}}^{+}+6\ {\mathrm{e}}^{\hbox{-}}\to 3{\ mathrm{H}}_2\mathrm{O} $$ (2)

순 방정식 DMFC 반응은 다음과 같이 요약될 수 있습니다.

$$ {\mathrm{CH}}_3\mathrm{OH}+3/2{\mathrm{O}}_2\to {\mathrm{CO}}_2+2{\mathrm{H}}_2\mathrm{ O} $$ (3)

DMFC 시스템에는 능동 및 수동 모드의 두 가지 유형의 DMFC 모드가 있습니다[23,24,25]. 활성 DMFC 시스템에서 DMFC 스택의 출구 스트림은 액체 메탄올 공급의 폐쇄 루프 제어를 통해 재순환됩니다. 한편, 애노드 스트림의 액체 메탄올은 추가 메탄올과 물을 충분히 주입하여 목표 농도에 따라 이 연료를 복원하는 데 중요한 역할을 하는 메탄올 농도 센서에 의해 제어됩니다. 메탄올 공급 농도를 제어하고 유지하기 위해 DMFC 시스템에서 사용되는 여러 유형의 메탄올 농도 센서가 있습니다[17]. 일반적으로 액체 메탄올은 연동 펌프에 의해 양극 측으로 전달되고 산소를 포함하는 주변 공기는 송풍기 또는 팬에 의해 음극 측으로 공급됩니다[16]. DMFC 시스템의 수동 모드에서 액체 메탄올은 시스템에 지속적으로 공급됩니다. 이 수동적 개념은 DMFC 시스템에 매우 매력적입니다[26,27,28]. 수동의 개념은 시스템이 지원 장치 없이 완전히 자율적으로 작동한다는 것을 의미합니다. 수동 DMFC의 개념은 시스템이 메탄올을 펌핑하고 스택으로 공기를 불어넣는 외부 장치의 도움 없이 완전히 자율적으로 작동함을 의미합니다. DMFC 시스템의 수동 모드에서 촉매층은 반응물로 메탄올과 산소에 의해 공급됩니다. 메탄올 산화 반응(MOR) 중 CO2 그리고 물은 수동적 수단, 즉 확산, 자연 대류, 모세관 작용 등을 통해 세포에서 제거됩니다. [20]. 패시브 모드 DMFC는 액티브 모드 DMFC에 비해 더 단순하고 컴팩트한 디자인과 저렴한 비용 면에서 더 유리해 보입니다. 복잡한 시스템 설계 및 제어는 능동 모드 DMFC의 단점이 될 수 있습니다[21]. 실제 사용 측면에서 능동 모드 DMFC는 고전력 시스템에 더 적합한 반면 수동 모드 DMFC는 저전력 요구 사항에 사용하기에 더 적합합니다[22].

그림 1은 단일 셀 DMFC의 설정 및 설계를 보여줍니다. 단일 셀 DMFC 스택은 양극과 음극인 두 개의 판으로 끼워진 5층 MEA(Membrane Electrode Assembly)로 구성됩니다. 애노드 측에서 액체 메탄올(메탄올 및 탈이온수 포함) 및 절대 메탄올은 연동 펌프에 의해 채널로 흐릅니다. 캐소드 측에서 공기는 로타미터에 의해 연료 전지로 펌핑됩니다. DMFC 스택의 온도 조절기는 보조 가열 장치에 의해 셀의 작동 온도를 유지하는 데 사용됩니다. 전자 부하 장치는 전류 밀도를 다른 수준으로 변경하고 해당 전압 값을 측정하는 데 사용됩니다. CO2가 생성되는 동안 전지 성능은 전기화학 워크스테이션에 의해 모니터링됩니다. 전체 반응의 최종 생성물은 CO2로 측정됩니다. 농도 검출기[23]. 직접 메탄올 연료 전지에서 실험 연구 동안 고려해야 할 몇 가지 중요한 작동 매개변수가 있습니다. 이 매개변수는 (i) 작동 온도, (ii) 메탄올 농도, (iii) 공급 메탄올 용액 및 공기의 입력 유량입니다[23]. . 그림 2a, b는 각각 DMFC의 능동 및 수동 모드를 보여줍니다.

<그림>

단일 셀 DMFC에 대한 일반적인 실험 설정 [23]

<사진>

a의 개략도 활성 모드 [24] 및 b DMFC의 수동 모드[25]

이 리뷰는 DMFC의 희촉매인 백금 촉매를 기반으로 한 촉매 지지체의 연구와 개발의 최근 진행 상황에 초점을 맞출 것입니다. 우리는 합금, 금속, 전이 금속, 금속 탄화물, 금속 질화물 및 그래핀/그래핀 옥사이드(G/GO), 탄소 나노튜브(CNT), 탄소 나노섬유( CNF), 탄소나노코일(CNC), 카본블랙(CB), 다중벽 탄소나노튜브(MWCNT), 탄소 메조포러스(CMS) 지지체 뿐만 아니라 지지체로 폴리아닐린(PANi) 및 폴리피롤(Ppy)과 같은 전도성 고분자 재료. 많은 합성 방법을 적용하여 백금 기반 촉매를 제조할 수 있습니다. 나노 스케일 Pt 입자를 얻기 위해 적용되는 가장 일반적인 방법은 함침[29,30,31,32,33,34], 열수 기술[35,36,37,38,39,40,41], 마이크로에멀젼[42,43, 44,45] 및 축소 [46, 47]. 일반적으로 제조 방법은 촉매 입자의 형태와 크기에 영향을 미칠 수 있습니다. 따라서 촉매 합성 방법의 선택은 매우 중요합니다.

다양한 유형의 백금 기반 촉매의 성능

지난 10년 동안 많은 연구자들이 DMFC 시스템용 메탄올 MOR에서 전기촉매 활성을 향상시키기 위한 전기촉매 개발에 집중해 왔다[37, 38]. 백금(Pt)은 MOR에 대해 상당히 높은 촉매 활성을 나타내는 단일 금속 촉매입니다. 그러나 DMFC 시스템에서 순수한 Pt 단독은 중간 종, 즉 일산화탄소(CO)에 의해 쉽게 피독될 수 있으며 Pt 촉매의 높은 비용은 전기 촉매로서의 상업적 적용을 제한하여 메탄올 산화의 동역학 속도를 낮춥니다. DMFC 시스템 [48,49,50]. 이 세 가지 점은 DMFC의 전기촉매로 백금만을 사용하는 데 있어 주요 장애물이자 한계입니다. 그러나 이러한 장애를 극복하기 위해 더 적은 Pt 사용량으로 더 나은 전기 촉매 성능을 달성하기 위해 Pt 기반 합금 전기 촉매를 합성하기 위한 여러 연구가 수행되었습니다[11, 47, 51, 52]. 일반적으로 백금 입자의 평균 크기와 형태는 SEM(Scanning emission micrograph) 또는 TEM(transmission electron micrograph) 분석을 통해 결정할 수 있으며, 이는 전극촉매의 물리적 특성을 특성화하는 데 사용할 수 있는 촉매 분야에서 가장 일반적인 방법입니다. Table 1은 Pt 입자의 합성 방법, 물성, 성능에 따른 평균 입자 크기를 나타낸 것이다.

바이메탈 PtRu는 이중 기능 메커니즘과 리간드 효과로 인해 가장 활성이 높은 촉매로 간주됩니다[48, 53]. PtRu는 흥미로운 촉매 합금이 되었으며 오늘날까지 많은 탄소 지지체와 함께 사용되었습니다. 그러나 루테늄(Ru) 금속 첨가의 독성 효과는 불확실하다[49]. 따라서 Pt와 다른 비귀금속을 혼합한 보다 저렴한 합금에 대한 연구가 수행되었습니다[49,50,51,52, 54,55,56,57]. 이는 "Pt 기반 합금의 성능" 섹션에서 논의된 바와 같습니다.

백금 기반 합금의 성능

Aricoet al. [35]는 MOR에서 Pt 촉매의 촉매 활성을 증가시키기 위해 수많은 연구가 수행되었음을 발견했습니다. 많은 연구에서 최적의 Pt-Ru 비율은 1:1로 확인되었으며 나노 크기의 입자 크기는 촉매 활용도를 향상시키는 이상적인 크기입니다. 그러나 Shi et al. [38]은 3:2가 MOR 촉매 활성을 향상시키기 위한 실험에서 Pt-Ru에 대한 최적의 비율임을 확인했습니다. 그 외에, PtRu 전기촉매 입자가 2-4 nm 범위의 나노크기 입자인 경우 메탄올 전기산화 활성에 대한 전기촉매 활성도 증가될 수 있다. Paulas et al. [39] 이 말에 동의한다. 우리가 알고 있는 바와 같이, Pt는 메탄올 연료에 대해 높은 반응성을 보여 Pt 금속을 DMFC 시스템의 애노드 전극에 대한 이상적인 전기 촉매로 만듭니다. 그럼에도 불구하고, Pt 촉매의 MOR 동안, 중간 종인 일산화탄소(CO)가 Pt 입자 표면에 형성되어 촉매 표면을 오염시킨다[58,59,60,61]. 따라서 Pt의 활성 부위를 덮지 않도록 Pt 입자 표면에 유독한 종의 형성과 관련된 문제를 극복하기 위한 몇 가지 노력이 필요합니다. 일반적으로 PtRu [62,63,64,65,66], PtRh [67,68,69,70,71], PtAu [72,73,74], PtSn [62, 63, 75, 76,77], PtNi[64,65,66,67,78,69], PtCo[70, 71, 78,79,80] 및 PtFe[81,82,83,84,85]가 자주 사용됩니다. DMFC 시스템에서 애노드 전극을 위한 전극 촉매 조합. 루테늄(Ru), 주석(Sn) 및 로듐(Rh)과 같은 이러한 금속의 첨가는 더 높은 촉매 활성을 생성하는 것으로 믿어집니다.

니켈(Ni)을 백금 기반 촉매에 통합하면 MOR 및 DMFC에 우수한 성능을 제공합니다. 최신 연구에서 Guerrero-Ortega와 동료들은 Pt-Vulcan 지지체에 Ni를 추가하면 바이메탈 촉매에서 Pt 사용량이 더 낮지만 MOR 동안 패러딕 전류의 중요한 증가가 100배 증가한다고 설명합니다. 55] . 그들의 실험 결과는 또한 Ni의 첨가가 전극 계면에서 더 나은 반응 성능을 향상시키는 일부 구조적 및 전자적 변형을 촉진한다는 것을 시사했습니다. 또 다른 연구에서 Pt 합금에 Au를 통합하면 전자 구조의 변화와 전기화학적 활성 영역(ECSA)의 개선으로 인해 전기 촉매 활성이 향상되었습니다[47]. 반면, Pt 기반 합금에 주석(Sn)을 첨가하면 전기촉매 활성이 증가하는 것으로 나타났으며, 이는 합금 시스템 및 산화된 형태에 Sn의 혼입에 의해 크게 영향을 받아 낮은 산화 전위로 인해 더 쉽게 반응을 촉진합니다. 56]. 또한, Pt 기반 합금에 코발트(Co)를 첨가하면 Pt/rGO보다 10배 더 높은 것으로 밝혀진 PtCo(1:9)/rGO 촉매에 의해 촉매 특성이 크게 향상되었습니다[51]. 전류 밀도의 증가는 물 활성화를 촉진하고 COad를 산화시키는 rGO 지지체의 친수성 특성에 대한 PtCo 나노입자의 더 높은 분산에 기인합니다. Pt 사이트에서. 또한 Co의 이중 기능 메커니즘에 따라 H2를 촉진합니다. 더 많은 -OH 이온 및 기타 O2를 생성하는 O 활성화 -백금 부위의 CO- 중간체 종을 산화시키기 위한 종 함유 [57]. Co의 이 기능적 메커니즘은 MOR을 향한 다른 촉매 전이 금속에도 사용될 수 있습니다. CO 종에 대한 촉매 산화 메커니즘 CO2 PtCo 촉매가 있는 경우 다음과 같이 요약할 수 있습니다.

$$ \mathrm{Pt}+{\mathrm{CH}}_3\mathrm{OH}\to \mathrm{Pt}\hbox{-} {\mathrm{CO}}_{\mathrm{ads}}+4 {\mathrm{H}}^{+}+4{\mathrm{e}}^{\hbox{-} } $$ (4) $$ \mathrm{Co}+{\mathrm{H}}_2\ mathrm{O}\to \mathrm{Co}{\left(\mathrm{OH}\right)}_{\mathrm{ads}}+{\mathrm{H}}^{+}+{\mathrm{e }}^{\hbox{-} } $$ (5) $$ {\mathrm{PtCO}}_{\mathrm{ads}}+\mathrm{Co}{\left(\mathrm{OH}\right) }_{\mathrm{광고}}/{\mathrm{CO}}_2+\mathrm{Pt}+\mathrm{Co}+{\mathrm{H}}^{+}+{\mathrm{e}}^ {\hbox{-} } $$ (6)

또한, Löffler et al. [86] DMFC의 양극 촉매로 PtRu를 성공적으로 합성하여 약 50 at.% Ru에서 메탄올 전기산화를 위한 가장 활성적인 전기 촉매를 생산했습니다. 한편, Dinh et al. PtRu 1:1 비율의 PtRu는 메탄올 산화(MOR)에 대해 더 강한 금속 거동과 더 높은 전기 촉매 활성을 갖는다고 보고했습니다. 성능은 (i) 최대화된 촉매 표면적 및 (ii) 1:1에 가까운 원자 비율의 금속 합금 부위의 최대 수를 갖는 촉매 표면의 두 가지 주요 요인과 관련이 있습니다. 이 두 그룹도 높은 점수를 보였다. 이중 기능 메커니즘을 기반으로 Aricò et al. [58] 및 Goodenough et al. [62]는 Pt 표면 활성 부위에 형성된 CO 중간 종이 이산화탄소(CO2)로 산화될 수 있다고 제안했습니다. ) 낮은 전위 영역에서 Ru, Sn 및 Mo와 같은 2차 원소에 형성된 활성 산소 원자에 의해 발생합니다. 표 1은 MOR을 위해 연구원들이 수행한 다양한 유형의 Pt 합금 촉매의 성능을 요약한 것입니다. 이관능 메커니즘[88,89,90]에 따르면 지지된 PtRu 합금 촉매의 MOR은 다음 식으로 요약할 수 있습니다. Pt는 Ru보다 메탄올 흡착에 더 활성인 촉매입니다. 따라서 메탄올 산화 반응에 대한 PtRu 전기 촉매의 전체 반응은 이중 기능 메커니즘을 따릅니다.

$$ \mathrm{Pt}+{\mathrm{CH}}_3\mathrm{OH}\to \mathrm{Pt}\hbox{-} {\mathrm{CH}}_3\mathrm{OH}\mathrm{ads }\to \mathrm{Pt}\hbox{-} {\mathrm{CO}\mathrm{H}}_{\mathrm{ads}}\to 3\mathrm{H}+3\mathrm{e}\hbox {-} \to \mathrm{Pt}\hbox{-} {\mathrm{CO}}_{\mathrm{ads}}+{\mathrm{H}}^{+}+{\mathrm{e}} ^{\hbox{-} } $$ (7) $$ \mathrm{Ru}+{\mathrm{H}}_2\mathrm{O}\to \mathrm{Ru}\hbox{-} {\mathrm{ OH}}_{\mathrm{광고}}+{\mathrm{H}}^{+}+{\mathrm{e}}^{\hbox{-} } $$ (8) $$ \mathrm{Pt }\hbox{-} {\mathrm{CO}\mathrm{H}}_{\mathrm{ads}}+\mathrm{Ru}\hbox{-} {\mathrm{OH}}_{\mathrm{ads }}\to \mathrm{Pt}+\mathrm{Ru}+{\mathrm{CO}}_{2+}2{\mathrm{H}}^{+}+2{\mathrm{e}}^ {\hbox{-} } $$ (9) $$ \mathrm{Pt}\hbox{-} {\mathrm{CO}}_{\mathrm{ads}}+\mathrm{Ru}\hbox{-} {\mathrm{OH}}_{\mathrm{ads}}\to \mathrm{Pt}+\mathrm{Ru}+{\mathrm{CO}}_2+{\mathrm{H}}^{+}+{ \mathrm{e}}^{\hbox{-} } $$ (10)

이 이중 기능 메커니즘을 참조하면, 메탄올은 초기에 해리되어 Pt에 흡착되고, 이후에 COads로 분해됩니다. 및/또는 포르밀 유사 종 -CHOads 탈수소화 반응에 의해 (7). 동시에 물은 OHads로 해리됩니다. Ru 사이트(8)에 흡착됩니다. 그런 다음 종은 Pt 및 Ru 사이트에 흡착되어 함께 결합하여 CO2를 형성합니다. 분자 (9) 및 (10). Pt–CO광고 간의 반응 및 Ru–OHads CO2로 이어집니다. 진화, 갱신된 Pt 및 Ru 사이트 생성(반응 10). 반면 Ewelina Urbanczyk et al. [48] ​​알칼리 매질(1.0 M KOH)에서 PtNi 촉매에 대한 메탄올 산화 반응을 수행하였다. 이론적으로 알칼리성 매질에서의 메탄올 산화 반응은 다음과 같습니다.

$$ {\mathrm{CH}}_3\mathrm{OH}+6\mathrm{OH}\to {\mathrm{CO}}_2+5{\mathrm{H}}_2\mathrm{O}+6{ \mathrm{e}}^{\hbox{-} } $$

반응은 DMFC의 Pt 전극에서 이산화탄소로 시작됩니다. 이 과정에서 중간 분자(CO)가 형성되어 Pt 활성면의 독성 및 비활성화를 유발할 수 있습니다. 이 CO 분자는 메탄올의 불완전 산화의 산물입니다. 불완전한 메탄올 산화는 CO를 중간 생성물로 형성합니다(식 11). 전기 촉매 표면은 또한 수산기를 흡착할 수 있습니다(식 6). 마지막으로 주 생성물의 탈착으로 인해 이산화탄소가 형성된다(13). 메탄올 산화 중에 생성될 수 있는 두 번째 독은 메탄입니다. 이 경우 다음과 같은 반응이 일어날 수 있습니다(8). 전기 화학 반응에서 중간 형태의 탄소가 이산화탄소로 전체 산화되는 과정은 다음과 같습니다.

$$ 3\mathrm{Pt}+{\mathrm{CH}}_3\mathrm{OH}\to \mathrm{Pt}-\mathrm{COads}+4{H}^{+}+2\mathrm{Pt }+4e-+{H}^2O $$ (11) $$ \mathrm{Ni}+{H}_2O\to \mathrm{Ni}-\mathrm{OHads}+{H}^{+}+e - $$ (12) $$ \mathrm{Pt}-{\mathrm{CO}}_{\mathrm{ads}}+\mathrm{Ni}-\mathrm{OHads}\to {\mathrm{CO}} _2+{H}^{+}+\mathrm{Pt}+\mathrm{Ni}+e- $$ (13) $$ \mathrm{Pt}-{\mathrm{CH}}_3+\mathrm{Pt}- H\to 2\ \mathrm{Pt}+{\mathrm{CH}}_4 $$ (14) $$ \mathrm{Pt}-{\mathrm{CH}}_3+\mathrm{Ni}{\left(\ mathrm{OH}\right)}_2\to \mathrm{Pt}+{\mathrm{CO}}_2+\mathrm{Ni}+5{H}^{+}+5e- $$ (15)

현재 연구자들은 PtRuSn[91, 92], PtRuNi[93,94,95], PtRuMo[70, 96]와 같은 Pt의 3원 및 4원 합금을 제조하여 Pt 기반 전기 촉매의 촉매 활성을 향상시키기 위한 합금 기술을 계속 연구하고 있습니다. , 97], 4차 PtRuOsIr[79, 80] 및 PtRuIrSn[97, 98]은 MOR에서의 탁월한 거동과 Pt 표면 사이트에 형성되는 중간 종(CO) 제거로 인해 발생합니다. 그러나 이러한 3차 및 4차 촉매에 3차 및 4차 금속의 첨가는 아직 알려지지 않았습니다. 더욱이, 3원 및 4원 합금을 생산하는 데에는 몇 가지 제한과 과제가 있습니다. 촉매 형태 및 촉매 조성의 최적화는 금속 및 조성의 많은 가능한 조합으로 인해 얻어지기 어려워진다. 그러나 많은 연구에서 세 번째 및 네 번째 금속의 첨가가 촉매 활성을 현저하게 향상시키고 촉매의 안정성을 증가시키며 메탄올 전기산화 및 DMFC 응용 분야에 대한 우수한 CO 내성을 입증했습니다.

Tsiouvaras et al. [99]는 PtRuMo/C 촉매의 전기화학적 측정을 수행하고 모든 3원 촉매가 2원 촉매보다 CO 및 메탄올 산화에 대해 더 활성적이지만 H2로 처리된 촉매를 발견했습니다. He로 처리되거나 처리되지 않은 3원 촉매와 관련하여 약 15% 향상된 성능을 보였다. 2012년 Hu et al. [100]은 우수한 바이메탈(PtNi) 전기촉매, 즉 중공 메조포러스 PtNi 나노구(HMPNN)를 성공적으로 합성했습니다. 촉매는 HMPNN의 독특한 구조와 큰 전기화학적 표면적 때문에 Pt 활용 효율이 크게 향상되어 MOR에서 뛰어난 촉매 성능을 나타냈습니다. 2016년 무렵 Yang et al. [101] 또한 합성된 바이메탈 PtFe 전기촉매의 반응성을 조사하여 Pt와 철(Fe) 금속 사이의 강한 상호작용이 바이메탈 NP의 흡착 에너지를 감소시킬 수 있음을 관찰했습니다. 그들은 또한 Fe 원자와 단일 공공 그래핀 사이의 상호 작용이 Pt 원자와 단일 공공 그래핀 사이의 상호 작용이 Pt 원자와 단일 공공 그래핀 사이의 상호 작용보다 강하기 때문에 이중 금속 PtFe 나노 입자가 Pt와 Fe 원자가 모두 표면에 있을 때 Fe 원자를 통해 단일 공공 그래핀에 흡착되는 것을 선호한다는 것을 발견했습니다. 단일 공석 그래핀. 그림 3은 Yang et al이 제안한 그래핀 지지체에 분산된 Pt 및 Fe 입자의 위치를 ​​보여줍니다. [101].

<그림>

Yang et al.에 의해 설명된 그래핀 지지체 상의 PtFe 촉매의 위치. [101]

백금 기반 촉매 및 전이 금속 탄화물의 성능

부식에 대한 높은 기계적 및 화학적 안정성, 산성 환경에 대한 우수한 내성, 장기간 안정성 및 높은 CO 내성을 갖는 전이 금속 탄화물(TMC)은 양극 촉매로 작용할 수 있습니다[88,89,90, 102,103,104]. 또한 TMC는 활성, 선택성 및 독에 대한 저항성과 관련하여 모금속에 비해 많은 이점을 제공합니다. 예를 들어 텅스텐 카바이드(WC)는 우수한 전기 전도성, 산성 환경에 대한 저항성, 저렴한 비용과 같은 특수 특성을 나타냅니다. , 및 메탄올 전기산화 공정에서 CO 중독에 대한 내성 [88, 105, 106].

Wang et al. [103]은 높은 표면적(256m 2 g −1 ) 간단한 열수 방법을 통한 텅스텐 카바이드 미소구체. 여2 C는 합성된 샘플에서 주상으로 발견되었습니다. 현재 연구자들은 DMFC의 이상적인 촉매로서 WC에 담지된 Pt의 잠재력을 탐구하고 있습니다[38, 88, 107, 108]. Christian et al. [106] TMC는 전이 금속 원소와 관련하여 수소, 일산화탄소 및 알코올의 산화 반응 및 산소 환원을 포함한 특정 화학 및 전기 화학 반응에 대해 Pt, Pd, Rh 및 Ru와 같은 귀금속과 같이 거동한다고 결론지었습니다. [109, 110]. 다른 연구에서 Liu et al. [107]은 몰리브덴 카바이드(Mo-Carbides)가 텅스텐 카바이드의 촉진제 역할을 하고 DMFC에서 전기 촉매 활성을 증가시킬 수 있다고 제시했습니다. 그러나 Pt 금속을 포함하지 않으면 DMFC 시스템의 MOR에 대한 순수한 WC의 전기 촉매 활성은 여전히 ​​낮습니다. 따라서 WC 성분에 소량의 백금 금속을 첨가하는 것은 Pt와 WC 사이의 시너지 효과의 이점을 얻기에 매우 편리합니다[91, 111, 112]. 한편, Hassan et al. [109] 메탄올 산화 동안 형성되는 일반적인 불순물(CO 종)은 Pt 표면에 강한 결합 에너지를 가지고 있음을 밝혔습니다. 따라서 Pt 활성 사이트에서 제거될 수 있도록 산화되어야 합니다. Pt/WC 전기촉매에 WC 성분을 추가하면 MOR에 대해 높은 CO 내성을 보여 Pt 금속과 지지체 성분인 WC 사이에 시너지 효과가 있음을 나타냅니다. 이 연구는 또한 우수한 전기촉매 성능을 유지하면서 Pt 비용을 줄이기 위해 더 적은 Pt 금속을 사용하여 다른 연구원에 의해 수행되었습니다.

그 외에 WC 성분은 메톡시기(CH3 O-) 순수한 Pt보다 [113, 114]. (Pt:Ru)4-WC/RGO의 CV 성능은 330.11mA mg −1 의 전류 밀도로 뛰어난 촉매 성능을 나타냅니다. Pt는 다른 5개 촉매와 비교하여 합성된 그대로의 전기촉매가 MOR에 대한 촉매 활성이 우수함을 나타냅니다. 또한, Pt 촉매에서 Ru와 WC의 조합은 OH 표면 양을 증가시키고 Pt 표면에 흡착된 CO가 더 낮은 전위에서 산화되도록 하였다[39].

백금 기반 촉매 및 전이 금속 질화물의 성능

전이 금속 질화물(TMN)은 우수한 전기 전도도(금속성), 경도, 높은 전기화학적 안정성 및 연료 전지 작동 조건에서의 내식성으로 인해 Pt 촉매 지지체로서 이상적인 후보입니다[115,116,117,118]. CrsN, TiN 및 VN과 같은 전이 금속 질화물이 지지된 Pt 촉매가 보고되었으며 전통적인 탄소 지지체에 비해 높은 촉매 성능과 더 나은 안정성을 보여주었습니다[112]. 8, 9, 10족 금속(Ru, Os, Rh, Ir, Pd 및 Pt)의 두 번째 및 세 번째 행을 제외한 모든 전이 금속은 질화물을 형성할 수 있습니다. 전이 금속 질화물의 거동 및 구조적 특성은 문헌[92,93,94]에서 찾을 수 있습니다. Xiao et al. [112]는 산소환원반응(ORR)에 대한 우수한 성능과 안정성을 보이는 티타늄 코발트 질화물 담지 백금 전기촉매를 제조하였다. Ti0.9 공동0.1 N-지지 Pt 촉매는 작은 입자 크기와 우수한 금속 분산을 나타냈다. 이 준비된 전기 촉매는 또한 Pt의 전기화학적 표면적(ECSA)을 유지하고 ECSA 보존을 크게 향상시켰으며, 10,000 ADT 주기 후 초기 ECSA 강하가 35%만 감소했습니다. 코발트 도핑은 ORR 활동과 내구성을 크게 향상시켰습니다. 한편, DMFC 시스템에서 고성능 및 내구성 전기촉매는 넓은 표면적 Pt(Ru)/TiN 전기촉매를 사용하여 얻을 수 있으며, 이는 MOR에 대한 높은 전기화학적 활성을 나타내어 DMFC 시스템에 비해 ~ 52% 개선된 촉매 활성 및 우수한 안정성/내구성을 나타냅니다. 상용 JM-Pt(Ru). 한편, DMFC의 단일 전지 성능은 56% 더 나은 최대 전력 밀도를 달성했으며 CSG-Pt(Ru)/TiN 전기 촉매에 대해 뛰어난 전기 화학적 안정성을 보여주었습니다[115].

중공 및 다공성 구조 및 높은 표면적을 갖는 티타늄 질화철 나노튜브에 지지된 Pt 나노입자에 대한 현재 연구는 Li et al. [116]. 그것은 산성 조건에서 MOR에 대한 전기 촉매 활성의 상당한 증가를 나타내었고 더 나은 내구성을 가졌다. 이러한 특성의 이유는 Fe의 첨가가 Pt 원자의 전자 구조를 조정할 수 있음을 확인하는 실험 데이터 작업 때문이었고, 이는 MOR에 대한 Pt 촉매의 강화된 활성 및 안정성에 기여합니다. 한편, Xiao et al. [117], Pt/Ti0.80.2 N 촉매는 다공성 구조와 높은 표면적, 작은 크기 및 잘 분산된 Pt 나노입자를 나타냈다. 이 촉매 시스템은 TiN 나노구조의 고유한 전기화학적 안정성을 보존하고 MOR 활성과 내구성을 현저히 향상시켰다. 그러나 텅스텐 질화물(WN)의 전기화학적 안정성에 대한 현재 이용 가능한 정보는 여전히 불충분합니다[109].

한편, MoxN(x =1 또는 2) Ti 기판에서 4.4 M H2의 산성 전해질에서 전기화학적 안정성을 나타냄 SO4 50회 반복 사이클에 걸쳐 최대 + 0.67 V(vs. SHE)의 양극 전위. 그러나 이 전극촉매는 음극 및 양극 부식으로 인해 높은 음극(SHE 대비 - 0.1 V 미만) 및 양극(+ 0.67 V 이상 vs. SHE) 전위 영역에서 균열 및 부서지는 것과 같은 표면 손상을 각각 나타냈습니다. + 0.67 V(vs. SHE) 이상의 높은 양극 전위 영역에서 산소 조성은 MoOx 산화물 형성으로 인해 증가하여 비활성화를 유발할 수 있습니다. 이러한 결과는 MoxN이 수성 전해질에 존재하는 산소 종과 반응하고 + 0.67V(vs. SHE) 이상에서 불안정하다는 것을 나타냅니다. Mustafhaet al. [111]은 0.5M CH에서 20mV/s의 스캔 속도로 수행된 볼타모그램에서 높은 If/Ib 비율로 높은 CO 저항을 나타내는 지지체로서 TiN에 로딩된 Pt가 메탄올 산화에 대한 전기 활성을 나타냄을 발견했습니다. 3 OH + 0.5M H2 SO4 전해질로. Pt/TiN의 CO 저항의 원인으로 Pt와 TiN 사이의 이중 기능 효과가 인용되었습니다. 또한, Ottakam Thotiyl et al. [91]은 메탄올의 전기화학적 산화에 대해 매우 우수한 CO 내성을 나타내는 Pt-loaded TiN 촉매에 대해 좋은 결과를 달성했습니다. 그들은 알칼리 매질에서 MOR에 대한 Pt 지지체로 적합하게 만든 TiN의 특별한 특성은 탁월한 안정성, 극도의 내식성, 우수한 전자 전도성 및 강한 접착 거동을 나타낸다는 결론을 내렸습니다. TiN 담지 촉매는 장기간 안정성, 교환 전류 밀도 및 낮은 과전위에서 안정적인 전류 측면에서 유리합니다. TiN에 대한 40wt%의 백금 로딩이 실험에 사용되었습니다.

In recent years, Liu et al. [118] successfully synthesized platinum on titanium nickel nitride decorated 3D carbon nanotubes which reduced graphene oxide (TiNiN/CNT-rGO) support by solvothermal process followed by nitriding process. Pt with small particle size is well-dispersed on TiNiN/CNT-rGO support. The 3D shape of CNT-rGO support gives a fast route for charge transfer and mass transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO support. Thus, it greatly improved the catalytic activity of this catalyst. In another research, the non-carbon TiN nanotubes-supported Pt catalyst done by Xiao et al. [119] also displayed enhanced catalytic activity and durability toward MOR compared with the commercial Pt/C (E-TEK) catalyst.

Performance of Pt-Based Catalysts with Transition Metal Oxide

Pan et al. [92] reported the synthesis of platinum–antimony-doped tin oxide nanoparticles supported on carbon black (CB) as anode catalysts in DMFC, which exhibited better improvement in catalytic activity toward MOR compared to Pt-SnO2 /C or commercial Pt/C electrocatalyst. The enhancement in activity was attributed to the high electrical conductivity of Sb-doped SnO2 , which induced electronic effects with the Pt catalysts. Another work done by Abida et al. [93]described the preparation of Pt/TiO2 nanotube catalysts for methanol electrooxidation. The TiO2 nanotubes-supported Pt catalyst (Pt/TiO2 nanotubes) exhibited excellent catalytic activity toward MOR and had good CO tolerance. They also reported that the use of hydrogenotitanate nanotubes as a substrate for the Pt catalyst considerably improved the COads oxidation on Pt, but the MOR still occurred at high potential. Then, several years later, Wu et al. [94] synthesized Pt-C/TiO2 with MOR activity 1.6 higher than commercial Pt-C and the stability of Pt-C/TiO2 was also enhanced by 6.7 times compared to Pt-C. The excellent performance of this catalyst was a contribution of mesopores and partially coated carbon support. Zhou et al. [95] prepared hollow mesoporous tungsten trioxide microspheres (HMTTS) using the spray-drying method to yield Pt/HMTTS. The electrocatalyst exhibited excellent electrocatalytic activity and high stability toward MOR than Pt/C and Pt/WO3 electrocatalysts, which may be attributed to the well-ordered Pt particles (with an average size of 5 nm) on the HMTTS surface. Wu et al. [120] used polystyrene spheres as templates to obtain pore-arrayed WO3 (p-WO3 ). The Pt nanoparticles with an approximate size of 3.3 nm dispersed on pore-arrayed WO3 (Pt/p-WO3 ) exhibited high catalytic activity toward MOR.

Li et al. [121] used Sn-doped TiO2 -modified carbon-supported Pt (Pt/Ti0.9 Sn0.1 O2 –C) as an electrocatalyst for a DMFC system. The synthesized Pt/Ti0.9 Sn0.1 O2 –C electrocatalyst revealed high catalytic activity and CO tolerance toward MOR. The enhanced catalyst activity was due to the high content of OH groups on the Ti0.9 Sn0.1 O2 electrocatalyst sample and the strengthened metals and support interactions. In addition, Lv et al. [122] also reported in their work that the addition of TiO2 could not only facilitate CO removal and hinder CO formation on Pt surface during methanol oxidation, but it can also prevent the agglomeration and corrosion of Pt, which can be concluded from strong metal-supports interaction between TiO2 –C and Pt. Huang et al. [123] revealed that a TiO2 -coated carbon nanotube support for Pt electrocatalysts could be prepared via a one-step synthesis. Hao et al. [124] developed a new catalyst composed of Pt nanoparticles deposited on graphene with MoO3 . These catalysts exhibited high catalytic activity toward MOR and high resistance to CO species. However, the size of MoO3 must be tuned by controlling the metal oxide loading.

The selection of metal oxide such as MnO, RuO, CeO, SnO2 , MgO, and V2 O5 as additional component in electrocatalyst of Pt because of their low cost, good electrochemical properties, and have proton-electron intercalation properties [125]. From the catalytic activity aspect, it can be summarized that the addition of these metal oxides can enhance the electrocatalytic activity of DMFC and other fuel cells. The incorporation of these conducting metal oxides together with Pt catalyst could also facilitate the oxidation process of CO intermediate molecules. Hence, these types of metal have high potential to be used together with platinum as anode electrode.

Carbon support

To improve the utilization of the Pt catalysts, the carbon support is also another useful approach to be used together with Pt. Carbon materials are largely used as catalyst support because of its special properties such as relatively stable in both acid and basic electrolyte, good conductivity, and provide high surface area for dispersion of metal catalyst. It is believed that carbon materials have a strong effect that can influence the electrocatalysts properties such as metal particle size, morphology, metal dispersion, alloyed degree, and stability. Carbon supports can also affect the performance of supported catalysts in fuel cells, such as mass transport and catalyst layer electronic conductivity, electrochemical active area, and metal nanoparticle stability during the operation.

Currently, a great concern of the development in the nanotechnology field, especially carbon nanomaterials synthesis, is to create more stable and active supported catalysts. Support materials of nanoparticles are believed to be the most promising materials for catalytic activity in fuel cells, including the DMFC system. Pt has been traditionally used as nobel catalysts for many fuel cells application [126,127,128]. However, the high cost and low reserve are hindering commercialization of fuel cells and driving researchers to make the utmost of the catalyst. According to this problem, the major effort has been done toward nanoscaling of the catalyst nanoparticles to form more active sites per mass unit. The morphology, structure, and activity of the catalyst, and correspondingly the whole lifetime of a cell, thus strongly depend on the catalyst support [129]. Table 2 shows the preparation, physical properties, performance, and activity of Pt-based supported carbon done by groups of researchers. The details of Pt-based supported carbon will be performed in the following sections:“Graphene Support” to “Carbon Nanocoils”.

Graphene support

Graphene has many extraordinary properties; it exists as a two-dimensional carbon (2-D) form, which is called a crystalline allotrope, one-atom-thick planar flat sheet of sp2 tightly bonded carbon atoms with a thickness of 0.34 nm. Its carbon atoms are packed in a regular atomic-scale chicken wire (hexagonal) pattern [92, 119]. The theoretical specific surface area of graphene is 2630 m 2 g −1 , which is much larger than that of carbon black (typically less than 900 m 2 g −1 ) and carbon nanotubes (100 to 1000 m 2 g −1 ) and similar to that of activated carbon [130]. Graphene has high potential as a metal support [131, 132, 133] [33] due to its high surface area [134] for better catalyst/metal dispersion [135], high electrical conductivity [136], and good thermal properties [137, 138]. Moreover, the functionality of graphene support can be modified by changing it surface structure, and hence contribute to its potential applications, such as in fuel cells, energy storage, electrochemistry, supercapacitors, and batteries [138,139,140,141,142]. Figure 4 illustrates the preparation steps to obtain the graphene nanosheets (GNS), while Fig. 5 shows their TEM images [143]. It can be clearly observed that the thickness of the GO with many typical wrinkles obviously decreases compared to graphite. This can be explained by the presence of the rich oxygen-containing functional groups over the surface of GO [132]. Besides, both resulting GN-900 and GN-900-C contained of a large size of nanosheets structure, but the GN-900-C comprised more transparent than the GN-900.

illustration of the preparation of graphite oxide to graphene nanosheets (GNS) by using oxalic acid [143]

TEM images of graphite (a ), GO (b ), GN-900 (c ), and GN-900-C [143]

The discovery of graphene sheets began around 2000 by mechanical extracting process from 3D graphite source [133]. Graphene can be obtained by several synthesis methods such as hydrothermal [144], chemical reduction [143], chemical vapor deposition, and electrochemical. Ma et al. [145] enhanced the electrocatalytic activity of Pt nanoparticles by supporting the Pt nanoparticles on functionalized graphene for DMFC. Functionalized graphene was prepared by methyl viologen (MV) and Pt/MV–rGO electrocatalyst was synthesized by a facile wet chemical method. They also reported that the higher catalytic activity of Pt/MV–RGO was attributed to the synergetic effect between MV and rGO.

Meanwhile, Zhang et al. [146] modified the graphene support with graphene nanosheets through Hummer’s method, followed by polymerization of aniline (as nitrogen source). The TEM images for Pt/NCL-RGO and Pt/RGO electrocatalysts show that the aggregation between separated graphene sheets was decreased by nitrogen-doped carbon layer (NCL), leading to a better dispersion of the Pt catalyst on the graphene nanosheets support and better electroactivity and stability toward methanol electrooxidation (MOR). Presence of NCL successfully prevented the aggregation of graphene nanosheets as the Pt nanoparticles supporting material.

In 2011, Qiu et al. [135] successfully synthesized nanometer-sized Pt catalyst via sodium borohydride reduction method with an average particle size of only 4.6 nm. These Pt nanoparticles showed an even dispersion of Pt catalyst on graphene oxide support and very high electrocatalytic activity toward MOR by controlling the percent deposition of Pt loaded on the graphene. In another study conducted by Ojani et al. [147], for synthesized Pt-Co/graphene electrocatalyst, it was shown that graphene nanosheets improved the electrocatalytic behavior and long-term stability of the electrode. In addition, the Pt-Co/G/GC electrocatalyst showed great stability toward MOR. The catalytic performance toward MOR can also be improved by using cobalt core–platinum shell nanoparticles supported on surface functionalized graphene [148]. This enhanced catalytic activity could be attributed to the poly (diallyldimethylammonium chloride) (PDDA) that plays a crucial role for dispersion and stabilization of Co@Pt catalyst on graphene support. PDDA-functionalized graphene provided the higher electrochemical active surface area [149, 150]. Huang et al. [138] also studied a PtCo-graphene electrocatalyst with outstanding catalytic performance and high CO tolerance toward the MOR, which far outperformed Pt-graphene and PtCo-MWCNT electrocatalysts with the same ratio of Pt and carbon content. Figure 4 shows the formation of a graphene-PtCo catalyst prepared from a graphite source. Sharma et al. [57] synthesized Pt/reduced graphene oxide (Pt/RGO) electrocatalyst using a microwave-assisted polyol process, which sped up the reduction of GO and formation of Pt nanocrystals. They compared Pt/RGO to a commercial carbon support (Pt/C), which exhibited high CO tolerance, high electrochemically active surface area, and high electrocatalytic activity for the MOR. In a previous study, Zhao et al. [139] reported that the unique 3D-structured Pt/C/graphene aerogel (Pt/C/GA) exhibited greater stability toward MOR with no decrease in electrocatalytic activity. Moreover, the Pt/C/graphene aerogel also exhibited significantly higher stability to scavenge crossover methanol at high potential in an acidic solution compared with the commercial Pt/C electrocatalyst. At the initial catalytic stage, the Pt/C electrocatalyst lost approximately 40% after 1000 CV cycles. In contrast, the Pt/C/graphene aerogel only lost 16% of the initial catalytic activity. After 200 cycles of CV, the current density of Pt/C/graphene aerogel was much higher with a remarkably higher stability than that of Pt/C electrocatalyst. Meanwhile, Yan et al. [151] demonstrated highly active mesoporous graphene-like nanobowls supported Pt catalyst with high surface area of 1091 m 2 g −1 , high pore volume of 2.7 cm 3 g −1 , and average pore diameter of 9.8 nm obtained by applying a template synthesis method. In addition, the Pt/graphene bowls also achieved high performance toward MOR with a current density value of 2075 mA mgPt −1 , which was 2.87 times higher than that of commercial Pt/C (723 mA mgPt −1 ). The onset potential for the Pt/graphene bowls toward methanol electrooxidation was negatively shifted by approximately 160 mV compared with that to the latter and showed CO resistance. Figure 6 shows the proposed schematic for the formation of PtCo catalyst on reduced-GO (rGO) support [51]. It is described that the formation of graphene oxide nanosheets from oxidation of graphite powder leads to the increase in interlayer “d” spacing of stacked graphitic sheets from 0.34 to 0.78 nm due to the presence of various oxygen-containing functional groups. The oxygen-containing functional groups act as anchor sites for the well-dispersed Pt and PtCo nanoparticles on rGO sheets, and used for efficient electrooxidation of methanol.

Illustrates the schematic formation of graphene supported Pt-Co catalyst [51]

We can conclude that the reduce graphene oxide (rGO), graphene, modified graphene as supporting material exhibited high electrocatalytic activity toward methanol electrooxidation process. A lot of studies have been reported related to the particle size distribution and size, morphologies, and catalytic activities of Pt and Pt alloys using graphene as supporting material, which showed great improvement in fuel cell performance as mentioned and discussed above. Thus, graphene support can be further studied for better fuel cell performance.

Multiwall Carbon Nanotube and Single-Wall Carbon Nanotube Support

Several years ago, Jha et al. [140] prepared multiwall carbon nanotube (MWCNTs) via chemical vapor deposition using an AB3 alloy hydride catalyst. Platinum-supported MWCNT (Pt/MWCNT) and platinum-ruthenium-supported MWCNT (Pt-Ru/MWCNT) electrocatalysts were prepared by chemical reduction. The performance of these electrodes was studied at different temperatures, and the results demonstrated a very high power density of 39.3 mW cm −2 at a current density of 130 mA cm −2 , which could be attributed to the dispersion and accessibility of the MWCNT support and Pt-Ru in the electrocatalyst mixture for the methanol oxidation reaction. This was also done by other researchers that using different catalyst supported MWCNT for DMFC system [152,153,154,155]. Meanwhile, Wu and Xu [156] compared MWCNT-supported Pt and single-wall carbon nanotube (SWCNT)-supported Pt. Figure 7 shows that the TEM images of Pt catalyst was deposited on MWNT and SWNT electrodes through the electrodeposition technique. The Pt particles in Pt-SWNT (Fig. 7b) looked closer contact with the network of entangled and branched bundles of SWNT support, and the shape is closer to highly exposed sphere. The benefits of the SWCNT support are due to its greater electrochemical surface-active area and easier charge transfer at the electrode/electrolyte interface because of the graphitic crystallinity structure, rich amount of oxygen-containing surface functional groups, and highly mesoporous and unique 3D-structure of SWNT. The electrodeposition technique carried out by them contributed to higher utilization and more uniform dispersion of Pt particles on its support.

TEM images for the Pt on MWCNT(a ) and SWCNT (b ) [156]

Then, Wang et al. [157] reported the high performance of modified PtAu/MWCNT@TiO2 electrocatalyst prepared via deposition-UV-photoreduction for DMFC, which also exhibited high CO tolerance. Zhao et al. [126] studied 3D flower-like platinum-ruthenium (PtRu) and platinum-ruthenium-nickel (PtRuNi) alloy nanoparticle clusters on MWCNTs prepared via a three-step process, and the best ratios obtained from their experiments for the PtRu and PtRuNi alloys were 8:2 and 8:1:1, respectively. Another group, i.e., Zhao et al. [158], found a higher current density toward MOR and better activity for MWCNT-supported PtWC compared with Pt/C electrocatalyst. These results were attributed to the factors of the synergistic effect between the Pt catalyst and the WC component, high CO tolerance from the bifunctional effect of the Pt catalyst and the WC component, and strong interaction between metals and WC in the electrocatalyst composite.

As a summary, both of MWCNT and SWNT support in terms of structural, surface, and electrochemical properties have their own characteristics as supporting material that remarkably enhanced their performance in catalysis of methanol oxidation process. However, as a comparison, SWCNT possess a high degree of graphitization, highly mesoporous 3D structure, and contain more oxygen-containing functional groups at its surface sites. In relation with these properties, the SWCNT exhibits a higher electrochemically accessible surface area and faster charge transfer rate at the electrode/electrolyte interface.

Carbon Nanotube Support

Wen et al. [144] proposed that carbon nanotubes (CNTs) support could improve fuel cell performance; for example, Pt can be fixed to the inner wall and the outer wall of CNTs and may cause improvement in the electrocatalytic properties of platinum-CNTs. Yoshitake et al. [159] proposed that fuel cells using CNTs as the catalyst support produced larger current densities. The addition of binary or other components to the electrocatalysts for methanol electrooxidation overcomes the problems related to catalyst poisoning caused by CO during the reaction. Therefore, new electrocatalyst carbon supports, such as carbon nanotubes [160, 161], are being actively developed to significantly improve fuel cell performance. Kakati et al. [128] successfully synthesis the PtRu on CNT/SnO2 for anode catalyst DMFC via hydrothermal process. It has been found that the presence of SnO2 provide a high durability property for the catalyst and the presence of SnO2 in the district of Pt could supply oxygen-containing functional groups for the removal of CO intermediate molecules from the Pt surface sites during electrooxidation of methanol. Generally, the decomposition methanol occurs at Pt surface sites; meanwhile, the decomposition of water occurs at SnO2 surface sites to form oxygen-containing species which then react with CO intermediate molecules. However, as support material, the conductivity property of SnO2 still needs to be enhanced. Kakati et al. [128] also proposed the schematic diagram of the formation of PtRu on CNT/SnO2 composite as shows in Fig. 8, and FESEM images of CNT/SnO2 composite support (a and b) and PtRu/SnO2 /CNT composite electrocatalyst (c and d) in Fig. 9.

Illustrates the schematic diagram for the formation of PtRu/SnO2/CNT composite [128]

FESEM images of CNT/SnO2 composite support (a , b ) and PtRu/SnO2/CNT composite electrocatalyst (c , d )

Chien et al. [127] proposed that the high catalytic performance of Pt-Ru/CNT for MOR can be attributed to the presence of CNT as the carbon support material with several factors:(i) the as-synthesized Pt-Ru/CNT electrocatalyst owns the ideal nanosized particles and composition to increase catalytic activity, (ii) the presence of functional group on the CNT surface results in high hydrophilicity of CNT, which produces better electrochemical reaction on the electrode area, and (iii) the high electronic conductivity of the CNT support lowers the resistance in MOR. Jeng et al. [150] prepared Pt-Ru/CNT electrocatalyst via a modified polyol with a PtRu composition ratio of 1:1, exhibiting high catalytic activity toward MOR and better performance than that of commercial PtRu/C. Show et al. [162] reported that Pt catalyst with a size of less than 10 nm can be obtained by dispersing the Pt particles on a CNT surface using the in-liquid plasma method, and excellent performance was demonstrated by the electrical power achieving 108 mW cm −2 [162]. The in-liquid plasma method was also used by Matsuda et al. [163] that can applied to obtain nanometer-sized Pt catalyst on support material that remarkably enhanced the fuel cell performance.

To be concluded, high electric conductivity, large surface area, excellent chemical and electrochemical stabilities, quasi one-dimensional structure, and good morphology as the supporting materials are the key factors of carbon nanotubes (CNTs) in enhancing the DMFC performance. In addition, carbon support materials such as CNTs which contribute a large effect on metal distribution and size have also been proven to be an essential to the electrocatalysts to achieve high catalytic activity during methanol oxidation process.

Carbon Nanofiber Support

Steigerwalt et al. [164] reported the successful synthesis of PtRu alloy that was widely dispersed on a graphene carbon nanofiber (CNF) support as an electrocatalyst in DMFC. The catalytic activity was enhanced by ~ 50% relative to that recorded for an unsupported PtRu colloid anode electrocatalyst. Meanwhile, Wang et al. [152] reported that Pt/CNF nanocomposites obtained by the reduction of hexachloroplatinic acid (H2 PtCl6 ) precursor with formic acid (HCOOH) in aqueous solution containing electrospun CNFs at room temperature showed a higher current density than other prepared Pt/CNFs and was approximately 3.5 times greater than that of the E-TEK Pt/C electrocatalyst. Another research carried out by Giorgi et al. [153] described a CNF and bimetallic PtAu electrode with a single layer and both diffusive and catalytic functions using a decreased noble metal amount (approximately five times less) with a consequent large cost reduction. In addition, the bifunctional electrocatalytic properties were also active for the MOR on the PtAu nanoparticle catalysts [154]. Calderón et al. [155] reported PtRu/CNF prepared via reduction using sodium borohydride (NaBH4 ), methanol, and formate ions. This electrocatalyst synthesized by SFM was heat-treated (denoted as SFM TT), which improved its electrocatalytic activity during MOR. Later, Maiyalagan [165] reported that the addition of silicotungstic acid acted as a stabilizer for the PtRu particles on CNT support. The PtRu-supported CNT was prepared by microwave heating of an ethylene glycol (EG) solution of STA, H2 PtCl6 .6H2 O (as Pt precursor), and RuCl3 .xH2 O (as Ru precursor) with CNF suspended in the solution. The Pt and Ru precursors were loaded on CNF by conventional impregnation method. The results revealed that the PtRu nanoparticles are uniformly dispersed on carbon nanofiber support, with an average particle size of 3.9 nm enhanced the catalytic activity toward methanol electrooxidation. As a conclusion, the carbon nanotubes supporting material with high electronic conductivity and high surface area gives an advantage of better dispersion for the Pt or Pt alloys deposition. The higher the surface area of supporting material can reduce the agglomeration of metal particles on it, thus can produce better catalyst morphology for better fuel cell performance.

Mesoporous Carbon Support

Mesoporous carbon (MPC) support is another ideal candidate as an electrocatalyst support material in DMFC and fuel cell. Generally, mesoporous carbons are divided into two classes based on their structures which are ordered mesoporous carbons (OMCs), with highly ordered pore structure and uniform pore size, nonordered mesoporous carbons with irregular pores. Other than that, OPC can be produced by using high quality of SBA-15 silica and sucrose as carbon source template. To prepare the high quality of SBA-15 SBA-15 sample, triblock copolymer, EO20-PO70EO20 (Pluronic P123, BASF), as the surfactant and tetraethyl orthosilicate (TEOS, 98%, Acros) as the silica source are used, as reported by literature [166,167,168]. The synthesis of MPC starts from synthesis of SBA-15, followed by calcination process.

A well-dispersed and ultralow Pt catalyst (PtFe) supported on ordered mesoporous carbon (OMC) was prepared via a simple route and showed superior catalytic activity. The PtFe alloy with a size range of 3–5 nm was homogeneously dispersed on the CMS with a very high specific surface area of more than 1000 m 2 g −1 [169]. The incorporation of Fe was discussed in the previous section (“Performance of Various Types of Pt-Based Catalysts” section and “Performance of Pt-Based Alloys” section). The high specific surface area of mesoporous carbon support can be produced by carbonization process of a resorcinol-formaldehyde polymer with a cationic polyelectrolyte as a soft template [160]. The performance of Pt/MPC also related to the synthesis/preparation method as done by Kuppan and Selvam. Kuppan and Selvam [167] synthesized four type of Pt/mesoporous carbon by using different reducing agent which are NaBH4 , EG, hydrogen, and paraformaldehyde. From there, the Pt/mesoporous carbon synthesized using paraformaldehyde as reducing agent for showed highest current density. The highest in catalytic was attributed to the use of paraformaldehyde that gives the smallest Pt particle size (4.5 nm), and the highest ECSA (84 m 2 /g) belongs to Pt/mesoporous carbon.

Wang et al. [161] synthesized a Pt@WC/OMC electrocatalyst composite, in which the composite was platinized using a pulsed microwave-assisted polyol technique. The OMC produced in this synthesis exhibited high surface area property. The Pt@WC/OMC electrocatalyst also showed high activity, desirable stability, and CO tolerance toward MOR. In another work done by Zhang et al. [170], the ordered CMS had a unique hierarchical nanostructure (with a 3-D structure) with ordered large mesopores and macropores that facilitated the dispersion of Pt nanoparticles and rapid mass transport during the reactions.

To maximize the use of Pt particles, the support materials should have uniform dispersion, high utilization efficiency, and desirable activity and stability. Moreover, the good supporting materials must be suitable for surface chemistry, high loading of Pt dispersion, and some functional roles. Additionally, based on the previous studies as discussed above, the ordered mesoporous carbons with large pore sizes are highly desirable for fast mass transfer and, thus, enhance the catalytic activity especially in the reaction involve large reactants molecules.

Carbon Black

Carbon black (CB) is one of the commercial carbon support that has been used till now. There are many types of CB such as Vulcan XC-72, Black Pearl 2000, Denka Black, Shawinigan Black, Ketjen EC-300J, etc. [171, 172]. CB is commonly used as a carbon support material for electrocatalysts because it possesses high porosity properties, which make it suitable as a potential support material for the catalyst layer in PEMFCs and DMFCs as reported in provided literatures [173,174,175,176,177,178,179,180]. The comparison of the several carbon black support was reported by Wang et al. [181] who investigated the effect on DMFC performance using several types of carbon black such as Vulcan XC-72R, Ketjen Black EC 300J, and Black Pearls 2000 carbon black as additives/support for the Pt cathode catalyst. From the experiments, the results showed that Ketjen Black EC 300J was the most useful carbon support for increasing the electrochemical surface area and DMFC performance of the cathode catalyst.

Nowadays, CB is commercial carbon support for many fuel cell systems. Generally, it is used for the comparison with new or modified catalyst [125]. The following Table 3 summarizes the commercial carbon black and its properties for fuel cell application. There are so many modifications among carbon support materials and development of new carbon support for enhance fuel cell performance; however, commercial carbon black still is used in many fuel cell applications especially for the comparison with new or modified catalyst.

Carbon Nanocoils

Celorrio et al. [182] proposed carbon nanocoils (CNCs) as a PtRu support in their experiment, indicating that the electrocatalyst performance was strongly dependent on the synthesis method. CNC-supported electrocatalysts showed better electrochemical behavior than E-TEK electrocatalysts, and better electrocatalytic behaviors toward CO and methanol oxidation were achieved using CNC as a support material [182]. Sevilla et al. obtained highly graphitic CNCs from the catalytic graphitization of carbon spherules via the hydrothermal treatment of different saccharides which are sucrose, glucose, and starch [183]. They demonstrated that the high electrocatalytic activity of the CNCs is due to the combination of good electrical conductivity of their graphitic structure and high porosity property, which allows much less diffusional resistance of reactants/products. Two years later, Sevilla et al. [184] reported highly dispersed Pt nanoparticles on graphitic CNCs with diameters in the range of 3.0–3.3 nm and a very fine particle size distribution. The electrocatalyst possessed large active Pt surface area (up to 85 m 2 g −1 Pt), high catalytic activity toward MOR (up to 201 A g −1 Pt), and high resistance against oxidation, which was noticeably greater than that of the Pt/Vulcan electrocatalyst. Celorrio et al. [185] obtained Pt/CNC electrocatalysts via the impregnation method, which showed that a combination of Pt and CNCs facilitated the CO oxidation process.

Conductive Polymer Supports

Choi et al. [186] synthesized PtRu alloy nanoparticles with two types of conducting polymers, i.e., poly(N -vinyl carbazole) and poly(9-(4-vinyl-phenyl)carbazole), as the anode electrodes. Electrochemical and DMFC tests showed that these nanocomposite electrocatalysts were beneficial in a DMFC system, but their catalytic performance was still lower than that of a carbon supported electrode. Thus, they suggested that higher electrical conductivity of the polymer and lower catalyst loss are required in nanocomposite electrodes to achieve better performance in a DMFC. Choi et al. [171] and Kim et al. [172] prepared polyaniline (PANi) as a support material for PtRu catalyst in a DMFC system. PANi is a group of conductive polymers with high electronic conductivity and a methanol oxidation current similar to that of carbon-supported PtRu catalyst. Then, Kim et al. [172] conducted catalytic tests to compare PtRu/PANi support with PtRu/carbon support, showing that the enhanced catalytic activity of PtRu/PANi was due to (i) the high electrical conductivity of the polyaniline support, (ii) the increase of electrochemical surface area of the prepared electrocatalyst, and (iii) the higher ion diffusion behavior. In another study, Amani et al. [74] synthesized PtSn supported by C-PANI as an electrocatalyst with different Pt:Sn atomic ratios using the impregnation method. The PtSn/C-PANI electrocatalyst with a ratio of 30:70 showed outstanding performance in the methanol electrooxidation, and the current density was approximately 40% higher than PtRu/C and 50% higher than Pt/C-PANi. The CO tolerance and stability were improved compared to that of PtRu/C, and the methanol crossover was reduced. Yaldagard et al. [173] studied the electrocatalytic performance of Pt/PANi/WC/C electrocatalyst for methanol electrooxidation (MOR) and oxygen electro-reduction (ORR), and it exhibited higher MOR activity, high CO resistance, and improved stability compared to Pt/C electrocatalyst in the presence of methanol.

Wu et al. [174] presented polypyrrole nanowire networks (PPNNs) as the anodic microporous layers (MPLs) of passive DMFC. In passive DMFC system, the novel MPL achieved a 28.3% increase in the power density from 33.9 to 43.5 mW cm −2 compared with the conventional layer with a similar PtRu (1:1). The high performance was due to the presence of PPNNs, which expressively improved the catalyst utilization and mass transfer of methanol on the anode. Besides, Selvaraj and Alagar [175] prepared Pt-Ru nanoparticle-decorated polypyrrole/multiwalled carbon nanotubes (Ppy/CNT) via the in situ polymerization of Ppy on CNTs containing ammonium peroxydisulphate (NH4 )S2 O8 as an oxidizing agent at the temperature range of 0–5 °C, followed by deposition of Pt particles on PPy-CNT composite films via chemical reduction to produce Pt/PPy-CNT. It was found that the PtRu particles deposited on PPy–CNT composite films exhibited higher catalytic activity and stability toward MOR compared to Pt/PPy-CNT. So far, the investigation on polymer as supporting materials is not much as carbon support materials. From aspect as supporting materials, the performance of polymer support was not good/excellent as carbon support. Further studies are needed in the future for better electrocatalytic activity and DMFC performance.

Problems and Limitations of Using Pt for DMFC Systems

There are two major challenges in the development of new DMFC catalysts:(i) performance, including the catalytic activity, reliability, and durability; and (ii) catalyst cost reduction. Two major problems arise in DMFC when using pure Pt alone as the anode catalysts:(1) slower kinetics oxidation of methanol, even on some state-of-the-art anode catalysts, and methanol crossover through the membrane, which not only lowers cathode performance but also reduces fuel efficiency. To develop successful fuel cell technology, including DMFC technology, new catalysts must be investigated to improve the performance and reduce the cost. Reduction of the catalyst cost remains a major challenge. Currently, platinum is one of the most effective electrocatalysts for DMFC due to its high catalytic activity for methanol oxidation, but because it is a precious metal, platinum usage is challenging and limited [176, 177]. Therefore, many scientists have attempted to find materials that can behave like Pt catalysts. One problem with the MOR in DMFCs is that CO is produced as an intermediate reaction product when using Pt catalyst and has strong binding energy on platinum particles, poisoning the active sites of the platinum surface area [58]. Therefore, CO must be removed by oxidizing it from the Pt surface using another material with high resistance to CO poisoning. For example, Hwu et al. proposed Pt-modified WC catalyst that has remarkable resistance to CO poisoning [178]. On the other hand, they also suggested that CO tolerance originates from the lower CO desorption temperature on pure and Pt-modified WC compared to pure Pt.

There are many solutions that can be applied to reduce the cost of Pt, overcome or minimize the formation of CO species during methanol oxidation, and increase the kinetics of methanol oxidation, such as alloying with other metals or transition metals, the incorporation of metals, metal nitrides, and metal oxides and the use of carbon supports as discussed in this paper. However, to overcome this problem, we need to understand the formation of CO on Pt sites particle, and understanding of the mechanism of the anode reaction in DMFCs. Unfortunately, it has limited amount of mechanistic insight to be studied, because this reactions involve complex mechanism path with many possible intermediate molecules and also competing reaction pathways [179]. For Pt catalytic mechanism, it has been suggested by a direct reaction path. Unfortunately, the use of Pt on other metals has limited mechanistic information available. Figure 10 represents the reaction path for methanol electrooxidation and their possible intermediates molecules formed during the process. Black arrows show direct path, while green arrows show the indirect mechanism for CO2 formation as a final product. In the direct mechanism, the reaction path does not involve a CO intermediate, and CO2 is formed directly from methanol. In contrast, indirect mechanism forming a CO intermediate molecule and subsequently it is oxidized to CO2 제품. Notably, CO is the most stable molecule of all the intermediates on Pt during MOR. The stability of CO causes it to be a main reason for the extensive CO poisoning problem that is often found on Pt catalyst.

Schematic of the reaction paths and possible intermediates molecules considered in methanol electrooxidation [237]

First step in the mechanism of methanol decomposition reaction on Pt is the activation of methanol molecule. It can take place via hydrogen abstraction from either the carbon or the oxygen atoms. Further step, hydrogen abstraction creates formaldehyde (CH2 O) or hydroxymethylene (CHOH), followed by formyl (CHO) or COH. In the direct mechanism, instead of stripping off the final hydrogen from CHO or COH molecule to CO, a water molecule will release a proton/electron pair and resulting to OH species that can further bind with the carbonaceous species to form dihydroxycarbene (C(OH)2 ) or formic acid (HCOOH). This step is called hydroxyl addition process. The next step is followed by dehydrogenation to form either formate (HCOO) or carboxyl (COOH) molecule, with subsequent dehydrogenation to form CO2 as the final product of reaction. In addition, an alternative direct mechanism involve the stripping of a proton/electron pair from water and addition of the resulting hydroxyl to CH2 O, subsequently to H2 COOH, which then undergoes dehydrogenation to form HCOOH or dioxymethylene (Hs COO). The Hs COO molecule can then undergoes dehydrogenation to HCOO and finally to CO2 . Besides, in the indirect mechanism, CHO or COH species are directly dehydrogenated to CO. Water is dissociated separately on the surface to form OH, and the two surface species react together to form CO2 gas in a way similar to the water-gas-shift reaction [187]. This indirect mechanism occurs because less energy is required to form CO than CO2 . Strong adsorbed CO intermediate form on the Pt surface sites revealed a major problem at the anode site of DMFC. Formation of this intermediate species can cause deactivation Pt catalyst. Furthermore, the rate of kinetic methanol oxidation for DMFC is slower. Therefore, to increase the resistance of Pt catalyst to CO poisoning on the electrodes, Pt alloy or hybrids, such as PtRu, PtSn, PtMO, PtPb, PtFe, PtCo, PtNi, PtRuOs, PtRuMo, PtRuSn, PtRuNi, etc. (as mentioned and discussed in “Performance of various types of Pt-based catalysts” section), are usually employed as electrocatalyst materials on DMFC anodes. Addition/incorporation of these alloys to Pt can prevent the adoption of CO on Pt surface by decreasing the oxidation overpotential of the anode [84].

Conclusion and Prospects

Great progress has been made in recent years in the development and optimization of new catalysts using Pt-based catalysts and carbon and conductive polymer supports for DMFC anode catalyst. Some new carbon materials, such as nano- or mesostructured carbons, have been demonstrated as highly potential catalyst support materials, although their applications face challenges in terms of synthesis, metal loading, and electrode preparation. The combination of platinum as the best metal catalyst for DMFC and an excellent carbon support could produce breakthroughs in the investigation of a new DMFC anode catalyst in the future. Since platinum is an expensive metal, it is necessary to reduce the amount of Pt used in the electrocatalyst. Therefore, this paper presented more than 100 studies on the electrocatalytic activity and performance related to Pt-based electrocatalysts and various carbon and conductive polymer supports. The main problems related to the platinum electrocatalyst, such as carbon monoxide formation during the methanol oxidation reaction and the poor kinetics of methanol oxidation, could be overcome using additional materials and various supports, as reported in the research presented in this paper.

Many studies conducted in the recent years to reduce the loading amount of Pt catalyst and to increase the percentage utilization efficiency, and hence, enhance the electrocatalytic activity of Pt toward the oxygen reduction reaction (ORR) and methanol electrooxidation reaction (MOR), were discussed in this paper. Pt has been alloyed with many transition metals such as Fe, Co, Ni, Ir, Ru, Rh, and Pd, resulting in higher catalytic activity for the DMFC system. The incorporation of these materials also resulted in good dispersion on the carbon and polymer supports, which showed higher performance in the DMFC test compared to the use of Pt metal alone. Various carbon support sources, namely activated carbon (AC), carbon black (CB), multiwall carbon nanotubes (MWCNTs), carbon nanofibers (CNFs), carbon nanotubes (CNTs), graphene, and conductive polymer supports, have been used with Pt-based catalysts to improve their catalytic performance. Additionally, Pt-based alloy catalysts have been designed as hollow mesoporous PtNi, nanowire PtRu, and nanodendritic PtRh, which showed improved electrocatalytic activity and superior electrocatalytic performance. Meanwhile, 3-D Pt/C/graphene aerogel demonstrated enhanced stability toward methanol electrooxidation. The work performed by researchers showed that the electrocatalytic activities of nanoparticles Pt alloy catalysts depend on several factors such as the synthesis method, condition of experiments (such as temperature and pH), alloy composition/ratio, precursors, and thermal treatment. For the future study, it should be extended to the optimization of the geometry and structure of previous studies that revealed active Pt alloys can increase their electrocatalytic activity and stability and the application of support materials for fuel cell applications. For example, current research that have been done by Liu et al. 2017 [188] shows the excellent performance of platinum. From theoretical calculations, it revealed that the main effective sites on platinum single atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centers, which ascribed to the tolerant CO in MOR. They also suggested that carbon black supported used together with Pt single atom is effective in cost, efficient, and durable electrocatalyst for fuel cell application. According to the above study, herein, we can conclude that the modification on structure and morphology of precious metal such as platinum could also remarkably increase the performance of electrocatalyst, but in the same time can reduce the overall cost of fuel cell for commercialization.

To improve the morphologies of Pt and Pt alloys, carbon support material also need further study. Nanoporous metals become an interesting part of catalyst to be studied for fuel cell application. It is determined very suitable for fuel cell catalysts because they possess high surface area, three-dimensional (3D) network structures with adjustable ligament/pore sizes suitable for mass transport, and electron conduction. Around 2017, Li et al. successfully carried out modification on Pt-Pd-Au trimetallic surface as cathode for oxygen reduction reaction [189]. The surface evolution of 3-D Pt-Pd-Au trimetallic greatly enhanced the ORR activity and highly stable as ORR catalyst. The modification of PtNi alloy also done by Li et al. 2016 [190] showed ultrafine jagged platinum nanowire with highly large ECSA that exhibits enhanced mass activity of ~ 50 times higher than state-of-the-art commercial Pt/C catalyst, while Bu et al. 2016 [191] reported highly uniform PtPb/Pt core/shell nanoplate with biaxially strain extremely active, stable for anodic oxidation reactions, and great performance compared to commercial Pt/C in both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Since the nanostructured platinum becomes an efficient catalyst for fuel cells as well as various industrial chemical reactions. Thus, these modifications on surface of Pt particles electrocatalysts could also to be applied in MOR for future DMFC.

On the other hand, to reduce the consumption of the Pt catalysts, the modification of the carbon support is also another useful way. This not only improves the transport capacity of protons but also reduces the usage of Nafion, which can cut the cost of the fuel cell. Moreover, with regards to the carbon support for the ORR catalysis, the hydrophobic carbon support material is required to allow water (product) to be quickly removed from the catalyst surface sites, and oxygen (reactant) to access the active sites. In contrast, the MOR catalysis requires a certain degree of hydrophilic carbon support. It can be achieved by the modification of the carbon support materials. By combination of modified carbon support materials and development of new carbon support with Pt metal catalyst, it is possible to get an ideal electrocatalysts for direct methanol fuel cell technology. Combination of Pt metal with varied carbon supports with different specific surface areas, structures, pore sizes, electronic properties, and morphologies could be great catalyst to be studied for future DMFC.

Carbon support also influence the overall performance for DMFC. Vulcan XC-72R, which is a commercial carbon support, has a large surface area, appropriate particle size, and good electrical conductivity for good support. However, in the process of depositing metal particle on these support with loading of 40% or more, the particle size of metal increased quickly, which is a disadvantage for DMFC, because a higher metal loading is used to give a better performance. In addition, multiwalled carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) with relatively smaller surface area, large diameter, and high aspect ratio could be very difficult to deposit a catalyst with high loading metal (40% and more). Therefore, modification of MWCNTs and CNFs support must be done to improve its surface area, surface functional groups, and reduce the wall thickness to achieve outstanding performance for direct methanol fuel cell even though high loading metal catalyst is consumed. As well, a great and important part to be further studied in DMFC system is about the anode and cathode catalyst preparation approaches.

약어

CB:

Carbon black

CH3 O:

methoxy group

CNC:

Carbon nano cage

CNF:

Carbon nano fiber

CNT:

Carbon nano tube

Co:

Cobalt

Co:

Cobalt

CO:

Monoxide molecules

CO2 :

Carbon dioxide

DMFC:

Direct methanol fuel cell

FC:

Fuel cell

Fe:

Iron

MOR:

Methanol oxidation reaction

MPC:

Mesoporous carbon

MWCNT:

Multi wall carbon nanotube

Ni:

Nickel

OMC:

Ordered mesoporous carbon

ORR:

Oxygen reduction reaction

PANi:

Polyaniline

PEMFC:

Proton exchange membrane fuel cell

Ppy:

Polypyrrole

Pt:

Platinum

Pt/MWCNT:

Platinum-supported MWCNT

Pt-Ru/MWCNT:

Platinum-ruthenium-supported MWCNT

Rh:

Rhodium

Ru:

Ruthenium

Sn:

Sternum

SOFC:

Solid oxide fuel cell

SWCNT:

Single-wall carbon nanotube

TMN:

Transition metal nitride


나노물질

  1. 진단 및 치료 응용 프로그램 개선을 위한 다기능 금 나노입자:검토
  2. 합성 및 생물의학 응용을 위한 형광 나노물질의 발전과 과제
  3. 슈퍼커패시터 애플리케이션을 위한 그래핀 및 고분자 복합 재료:검토
  4. 전기방사법을 통한 직접 메탄올 연료 전지용 새로운 복합 Tio2 탄소 나노섬유 양극 촉매 지지체의 제작 및 특성화
  5. 글리세롤 연료 전지의 전기 산화를 위한 새로운 양극 PdAu/VGCNF 촉매의 향상된 성능
  6. 슈퍼커패시터 애플리케이션용 전극으로서의 그래핀/WO3 및 그래핀/CeOx 구조의 평가
  7. 직접 메탄올 연료 전지를 위한 새로운 양극 촉매 지원:특성화 및 단일 전지 성능
  8. 금 나노클러스터를 위한 생물의학 응용:최근 개발 및 미래 전망
  9. 검토:유수 분리용 다공성 금속 필터 및 멤브레인
  10. Solvay, 해양 석유 및 가스 응용 분야용 고성능 탄소 섬유 테이프 출시